当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Field studies reveal functions of chemical mediators in plant interactions†
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2018-05-17 00:00:00 , DOI: 10.1039/c7cs00749c
Meredith C. Schuman 1, 2, 3, 4 , Ian T. Baldwin 1, 2, 3, 4
Affiliation  

Plants are at the trophic base of most ecosystems, embedded in a rich network of ecological interactions in which they evolved. While their limited range and speed of motion precludes animal-typical behavior, plants are accomplished chemists, producing thousands of specialized metabolites which may function to convey information, or even to manipulate the physiology of other organisms. Plants’ complex interactions and their underlying mechanisms are typically dissected within the controlled environments of growth chambers and glasshouses, but doing so introduces conditions alien to plants evolved in natural environments, such as being pot-bound, and receiving artificial light with a spectrum very different from sunlight. The mechanistic understanding gained from a reductionist approach provides the tools required to query and manipulate plant interactions in real-world settings. The few tests conducted in natural ecosystems and agricultural fields have highlighted the limitations of studying plant interactions only in artificial environments. Here, we focus on three examples of known or hypothesized chemical mediators of plants’ interactions: the volatile phytohormone ethylene (ET), more complex plant volatile blends, and as-yet-unknown mediators transferred by common mycorrhizal networks (CMNs). We highlight how mechanistic knowledge has advanced research in all three areas, and the critical importance of field work if we are to put our understanding of chemical ecology on rigorous experimental and theoretical footing, and demonstrate function.

中文翻译:

现场研究揭示了化学介质在植物相互作用中的功能

植物是大多数生态系统的营养基础,植于植物进化的丰富生态相互作用网络中。尽管植物的活动范围和运动速度受到限制,但它们却不具备动物典型的行为,但他们却是熟练的化学家,会产生数千种特殊的代谢产物,这些代谢产物的功能可能是传达信息,甚至操纵其他生物的生理机能。植物的复杂相互作用及其潜在机制通常在生长室和温室的受控环境中进行剖析,但这样做会引入自然环境中进化出的植物所不具备的条件,例如被盆栽约束,并接收具有非常不同光谱的人造光来自阳光。通过还原论方法获得的机械理解提供了在实际环境中查询和操纵植物相互作用所需的工具。在自然生态系统和农业领域进行的几项测试凸显了仅在人工环境中研究植物相互作用的局限性。在这里,我们重点介绍植物相互作用的已知或假设的化学介体的三个例子:挥发性植物激素乙烯(ET),更复杂的植物挥发性混合物以及通过常见菌根网络(CMN)转移的迄今未知的介体。我们着重介绍了机械知识如何在这三个领域进行先进的研究,以及如果要在严格的实验和理论基础上加深对化学生态学的了解并展示其功能,那么现场工作的至关重要。
更新日期:2018-05-17
down
wechat
bug