当前位置: X-MOL 学术IEEE Trans. Ind. Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power System Real-Time Emulation: A Practical Virtual Instrumentation to Complete Electric Power System Modelling
IEEE Transactions on Industrial Informatics ( IF 12.3 ) Pub Date : 2019-02-01 , DOI: 10.1109/tii.2018.2837079
Ali Parizad , Sobhan Mohamadian , Mohamad Esmaeil Iranian , Josep M. Guerrero

Hardware-in-the-loop (HIL) simulation is a technique that is being used increasingly in the development and test of complex systems. Real-world testing of an intricate system in a field-like power plant can be challenging, time-consuming, expensive, and hazardous. HIL emulators allow engineers to test devices thoroughly and efficiently in a virtual environment with high reliability and minimum risk of defect. In this paper, the complete electric power system (including generator, turbine-governor, excitation system, transmission lines, transformer, external grid and related loads) is implemented in a MATLAB/Simulink environment. Different virtual instrument pages are modeled in the graphical programming language of LabVIEW which enable fast and reliable measurement functions such as data acquisition, archiving, real-time graphical display and processing. The interaction between MATLAB and LabVIEW is accomplished by generating a Pharlap ETS Targets *.dll file which enables the two software to exchange real-time data. Also, a real 1518-kW excitation system is considered as a test case for the introduced HIL system. This equipment is connected to LabVIEW software through a National Instrument PXI technology. Different scenarios (electrical frequency/active power change, voltage step response, etc.) are simulated in the designed power system emulator (PSE). The validity of the implemented model for the excitation system is verified by finding good matching between MATLAB and HIL simulation results.

中文翻译:

电力系统实时仿真:用于完成电力系统建模的实用虚拟仪器

硬件在环(HIL)模拟是一种在复杂系统的开发和测试中越来越多地使用的技术。在类似现场的发电厂中对复杂系统进行现实世界的测试可能是具有挑战性,耗时,昂贵且危险的。HIL仿真器使工程师能够在虚拟环境中以高可靠性和最小的缺陷风险全面,有效地测试设备。本文在MATLAB / Simulink环境中实现了完整的电力系统(包括发电机,涡轮机调速器,励磁系统,输电线路,变压器,外部电网和相关负载)。LabVIEW的图形化编程语言对不同的虚拟仪器页面进行了建模,这些页面可实现快速可靠的测量功能,例如数据采集,归档,实时图形显示和处理。通过生成Pharlap ETS Targets * .dll文件可实现MATLAB与LabVIEW的交互,该文件使两个软件可以交换实时数据。同样,将实际的1518 kW励磁系统视为引入的HIL系统的测试用例。该设备通过National PXI技术连接到LabVIEW软件。在设计的电源系统仿真器(PSE)中模拟了不同的场景(电频率/有功功率变化,电压阶跃响应等)。通过在MATLAB和HIL仿真结果之间找到良好的匹配,可以验证所实现模型对励磁系统的有效性。dll文件,使两个软件可以交换实时数据。同样,将实际的1518 kW励磁系统视为引入的HIL系统的测试用例。该设备通过National PXI技术连接到LabVIEW软件。在设计的电源系统仿真器(PSE)中模拟了不同的场景(电频率/有功功率变化,电压阶跃响应等)。通过在MATLAB和HIL仿真结果之间找到良好的匹配,可以验证所实现模型对励磁系统的有效性。dll文件,使两个软件可以交换实时数据。同样,将实际的1518 kW励磁系统视为引入的HIL系统的测试用例。该设备通过National PXI技术连接到LabVIEW软件。在设计的电源系统仿真器(PSE)中模拟了不同的场景(电频率/有功功率变化,电压阶跃响应等)。通过在MATLAB和HIL仿真结果之间找到良好的匹配,可以验证所实现模型对励磁系统的有效性。)是在设计的电源系统仿真器(PSE)中进行仿真的。通过在MATLAB和HIL仿真结果之间找到良好的匹配,可以验证所实现模型对励磁系统的有效性。)是在设计的电源系统仿真器(PSE)中进行仿真的。通过在MATLAB和HIL仿真结果之间找到良好的匹配,可以验证所实现模型对励磁系统的有效性。
更新日期:2019-02-01
down
wechat
bug