当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sputtered Titanium Nitride Films on Titanium Foam Substrates as Electrodes for High‐Power Electrochemical Capacitors
ChemElectroChem ( IF 4 ) Pub Date : 2018-06-13 , DOI: 10.1002/celc.201800467
Tianye Zheng 1 , Mohammad H. Tahmasebi 1 , Bei Li 1 , Ying Li 1 , Sijia Ran 1 , Tom S. Glen 1 , Kwok-Ho Lam 1 , In-Suk Choi 2 , Steven T. Boles 1
Affiliation  

Electrochemical capacitors (ECs) with high‐power capabilities and stable cycling can effectively improve the state of the art in power delivery and energy storage. In this study, we investigate reactively sputtered titanium nitride (TiN) electrodes on three‐dimensional (3D) substrates with various electrolytes and high‐rate cycling conditions. The electrode exhibits cycling stability with negligible capacitance fading after 5 000 cycles and a great rate capability, allowing the (dis)charge rate to extend from 0.1 to 10 V s−1 and retaining nearly 50 % of the capacitance in a three‐electrode system. A symmetric device made with such electrodes is capable of working at a scan rate up to 100 V s−1, yielding a remarkable power density of 4.81×105 W kg−1 at 1.60 Wh kg−1. The energy density can be pushed to 168.03 Wh kg−1 at 4.03×104 W kg−1 by replacing the aqueous electrolyte with an organic one, and this can likely be further increased by electrolyte optimization. The material synthesis and device processing suggest that 3D TiN structures can enable a new class of high‐power ECs with enhanced stability compared to their carbon‐ and pseudo‐ counterparts.

中文翻译:

钛泡沫基底上溅射的氮化钛膜作为高功率电化学电容器的电极

具有高功率能力和稳定循环的电化学电容器(EC)可以有效地改善功率传输和能量存储方面的最新水平。在这项研究中,我们研究了在具有各种电解质和高速率循环条件的三维(3D)基板上的反应溅射氮化钛(TiN)电极。电极表现出循环稳定性,经过5 000次循环后电容衰减可忽略不计,并且具有出色的倍率能力,从而使(放电)放电速率从0.1扩展到10 V s -1,并在三电极系统中保留了近50%的电容。用这种电极制成的对称设备能够以高达100 V s -1的扫描速率工作,产生4.81×10 5  W kg的显着功率密度-1在1.60 Wh kg -1下。通过用有机电解质代替水性电解质,可以在4.03×10 4  W kg -1下将能量密度推至168.03 Wh kg -1,并且可以通过电解质优化进一步提高能量密度。材料合成和器件处理表明,与碳和伪碳纳米结构相比,3D TiN结构可以使新型的高功率EC具有更高的稳定性。
更新日期:2018-06-13
down
wechat
bug