当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced alkaline stability in a hafnium-substituted NaSICON ion conductor†
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2018-05-14 00:00:00 , DOI: 10.1039/c7ta09924j
Leo J. Small 1, 2, 3 , Jill S. Wheeler 1, 2, 3 , Jon F. Ihlefeld 1, 2, 3 , Paul G. Clem 1, 2, 3 , Erik D. Spoerke 1, 2, 3
Affiliation  

We present here a multi-length scale integration of compositionally tailored NaSICON-based Na+ conductors to create a high Na+ conductivity system resistant to chemical attack in strongly alkaline aqueous environments. Using the Pourbaix Atlas as a generalized guide to chemical stability, we identify NaHf2P3O12 (NHP) as a candidate NaSICON material for enhanced chemical stability at pH > 12, and demonstrate the stability of NHP powders under accelerated aging conditions of 80 °C and pH = 13–15 for a variety of alkali metal cations. To compensate for the relatively low ionic conductivity of NHP, we develop a new low temperature (775 °C) alkoxide-based solution deposition chemistry to apply dense NHP thin films onto both platinized silicon wafers and bulk, high Na+ conductivity Na3Zr2Si2PO12 (NZSP) pellets. These NHP films display Na+ conductivities of 1.35 × 10−5 S cm−1 at 200 °C and an activation energy of 0.53 eV, similar to literature reports for bulk NHP pellets. Under aggressive conditions of 10 M KOH at 80 °C, NHP thin films successfully served as an alkaline-resistant barrier, extending the lifetime of NZSP pellets from 4.26 to 36.0 h. This integration of compositionally distinct Na+ conductors across disparate length scales (nm, mm) and processing techniques (chemically-derived, traditional powder) represents a promising new avenue by which Na+ conducting systems may be utilized in alkaline environments previously thought incompatible with ceramic Na+ conductors.

中文翻译:

ha取代的NaSICON离子导体中增强的碱稳定性

在这里,我们介绍了基于成分定制的NaSICON的Na +导体的多长度尺度集成,以创建高Na +电导率系统,以抵抗强碱性水溶液环境中的化学侵蚀。使用Pourbaix Atlas作为化学稳定性的通用指南,我们确定了NaHf 2 P 3 O 12(NHP)作为NaSICON候选材料,可增强pH> 12时的化学稳定性,并证明了NHP粉末在80°C和pH = 13–15的加速老化条件下对各种碱金属阳离子的稳定性。为了补偿NHP相对较低的离子电导率,我们开发了一种新的基于低温(775°C)醇盐的溶液沉积化学方法,将致密的NHP薄膜应用于镀铂硅晶片和块状高Na +电导率Na 3 Zr 2 Si 2 PO 12(NZSP)颗粒。这些NHP膜显示的Na +电导率为1.35×10 -5 S cm -1在200°C下的活化能为0.53 eV,类似于散装NHP颗粒的文献报道。在80°C的10 M KOH的苛刻条件下,NHP薄膜成功地充当了耐碱性的屏障,将NZSP颗粒的使用寿命从4.26 h延长至36.0 h。跨不同长度尺度(nm,mm)的成分不同的Na +导体和加工技术(化学衍生的传统粉末)的这种集成代表了一种有前途的新途径,通过该途径,可以将Na +导电体系用于以前认为与陶瓷不兼容的碱性环境中Na +导体。
更新日期:2018-05-14
down
wechat
bug