当前位置: X-MOL 学术Eur. Polym. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Co-Printing of Vertical Axis Aligned Micron-Scaled Filaments Via Simultaneous Dual Needle Electrohydrodynamic Printing
European Polymer Journal ( IF 6 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.eurpolymj.2018.05.005
Baolin Wang , Shuting Wu , Zeeshan Ahmad , Jing-song Li , Ming-Wei Chang

Abstract In this study dual-needle electrohydrodynamic co-printing (DN-EHDCP) was developed to fabricate unique micron-scaled architectures based on multi-material fibrous (filamentous) morphologies. Two stainless steel needles (contributing towards dual needle design) were used to simultaneously co-print poly(ɛ-caprolactone) (PCL) and polyvinylpyrrolidone (PVP) polymers (using solvent based formulations including Fe3O4 nanoparticles and active pharmaceutical ingredient (API). Differences in polymer hydrophobicity and dissolution rate were used to modulate drug release (tetracycline hydrochloride, TE-HCL) from various co-printed configurations. Optical, scanning electron and fluorescent microscopy confirmed precision alignment and vertical stacking of both PVP and PCL printed filaments. Process parameters were found to strongly influence co-print construct diameter. Fourier Transform Infrared (FTIR) spectroscopy confirmed spatial locations of both PVP and PCL filaments. TE-HCL release from co-printed formulations exhibited two phases; rapid and sustained. In vitro biological assay (using L929 cell lines) demonstrated construct biocompatibility. However, selective integration (spatial and quantity) of sacrificial PVP fibers (after rapid dissolution) provided a method of in situ void engineering for enhanced interfacial interaction for remaining PCL structures. The present study shows the development and use of simultaneously co-printed filaments in the vertical axis with potential to control drug release through alignment of individual filaments and material type. Furthermore, the use of composite matrix under an external stimulus is also demonstrated indicating multiple approaches to modulate API release.

中文翻译:

通过同时双针电流体动力学打印垂直轴对齐微米级长丝的共打印

摘要 在这项研究中,双针电流体动力协同打印 (DN-EHDCP) 被开发用于制造基于多材料纤维(丝状)形态的独特微米级结构。两个不锈钢针(有助于双针设计)用于同时共印聚(ɛ-己内酯)(PCL)和聚乙烯吡咯烷酮(PVP)聚合物(使用溶剂型配方,包括 Fe3O4 纳米颗粒和活性药物成分(API)。差异聚合物疏水性和溶解速率的差异被用来调节药物释放(盐酸四环素,TE-HCL)从各种共同印刷的配置。光学、扫描电子和荧光显微镜证实了 PVP 和 PCL 印刷细丝的精确对准和垂直堆叠。发现工艺参数强烈影响共印结构直径。傅里叶变换红外 (FTIR) 光谱证实了 PVP 和 PCL 灯丝的空间位置。从共印配方中释放 TE-HCL 表现出两个阶段;快速和持续。体外生物测定(使用 L929 细胞系)证明了构建体的生物相容性。然而,牺牲 PVP 纤维(快速溶解后)的选择性整合(空间和数量)提供了一种原位空隙工程方法,以增强剩余 PCL 结构的界面相互作用。本研究显示了在垂直轴上同时共同印刷的细丝的开发和使用,具有通过对齐单个细丝和材料类型来控制药物释放的潜力。此外,
更新日期:2018-07-01
down
wechat
bug