当前位置: X-MOL 学术J. Anal. Appl. Pyrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Valorizing Municipal Solid Waste: Waste to Energy and Activated Carbons for Water Treatment via Pyrolysis
Journal of Analytical and Applied Pyrolysis ( IF 6 ) Pub Date : 2018-08-01 , DOI: 10.1016/j.jaap.2018.05.002
Chitanya Gopu , Lihui Gao , Maurizio Volpe , Luca Fiori , Jillian L. Goldfarb

Abstract Globally, as societies urbanize and demand for energy increases, the need to manage mounting quantities of municipal solid waste (MSW), produce renewable energy, and insure clean water supplies becomes more pressing each year. These issues could be addressed by integrating pyrolysis of MSW to recover liquid and gaseous biofuels and a solid biochar, with CO2 activation of the latter to produce activated biochars for water treatment. This potential conversion pathway is experimentally demonstrated by pyrolyzing a model MSW stream at 408 °C, the peak mass loss rate pyrolysis temperature and compared to pyrolysis at 900 °C. As pyrolysis temperature increases, we see conversion of plastic intermediaries into paraffins and polycyclic aromatic compounds, though the desirable gas components (methane, hydrogen, carbon monoxide) of the pyrolysis gas increase substantially. The CO2 activated biochars (activated at 600 °C and 900 °C) show surface areas over 300 m2/g, with the lower pyrolysis temperature and higher activation temperature yielding the highest areas. Adsorption experiments were performed with methylene blue to determine the ability of the activated MSW-biochar to remove organic pollutants from water. Adsorption is well described by the Langmuir isotherm, with equilibrium adsorption capacities upwards of 250 mgdye/g for all activated biochars.

中文翻译:

对城市固体废物进行增值:通过热解将废物转化为能源和用于水处理的活性炭

摘要 在全球范围内,随着社会城市化和能源需求的增加,管理越来越多的城市固体废物 (MSW)、生产可再生能源和确保清洁水供应的需求每年都变得更加紧迫。这些问题可以通过整合 MSW 的热解来回收液态和气态生物燃料以及固体生物炭,并通过 CO2 活化后者以生产用于水处理的活化生物炭来解决。通过在 408 °C(峰值质量损失率热解温度)下热解模型 MSW 流并与 900 °C 下的热解进行比较,实验证明了这种潜在的转化途径。随着热解温度的升高,我们看到塑料中间体转化为石蜡和多环芳烃,尽管所需的气体成分(甲烷、氢气、热解气的一氧化碳)大幅增加。CO2 活化的生物炭(在 600 °C 和 900 °C 下活化)的表面积超过 300 m2/g,较低的热解温度和较高的活化温度产生最大的面积。用亚甲蓝进行吸附实验以确定活化的 MSW-biochar 从水中去除有机污染物的能力。Langmuir 等温线很好地描述了吸附,所有活化的生物炭的平衡吸附容量高达 250 mgdye/g。用亚甲蓝进行吸附实验以确定活化的 MSW-biochar 从水中去除有机污染物的能力。Langmuir 等温线很好地描述了吸附,所有活化的生物炭的平衡吸附容量高达 250 mgdye/g。用亚甲蓝进行吸附实验以确定活化的 MSW-biochar 从水中去除有机污染物的能力。Langmuir 等温线很好地描述了吸附,所有活化的生物炭的平衡吸附容量高达 250 mgdye/g。
更新日期:2018-08-01
down
wechat
bug