当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase prediction in high entropy alloys – A kinetic approach
Acta Materialia ( IF 9.4 ) Pub Date : 2018-05-03
C. Chattopadhyay, Anil Prasad, B.S. Murty

A simple and completely predictive model has been developed to predict whether a multicomponent equiatomic alloy will form a single phase BCC, FCC, HCP or a combination of two or more solid solution phases or intermetallic compounds (IM) or an amorphous phase. This approach is based on the viscosity of alloys as a function of temperature, utilising the viscosities of its constituting elements, and suitably incorporating the crystal structure information. Some other parameters affecting viscosity of an alloy like atomic size of constituting elements, packing density of the unit cell, etc., are suitably incorporated into the model. The temperature-time-transformation (TTT) diagrams were generated with the help of the viscosity data of five widely experimentally examined alloys, CoCrCuFeNi, CoCrFeMnNi, AlCoCrFeNi, AlCuMgMnZn and ZrTiCuNiBe. The chance of formation of preferable lower order alloys has also been considered. In this regard, all the possible binary to quinary alloys that can form from the constituting elements have been studied. The formation of the single phase BCC, FCC, or formation of multi phases, IMs or an amorphous phase in these alloys has been excellently predicted by the model. It has also been revealed that AlCuMgMnZn alloy prefers to form a number of IMs with a rare HCP phase, which matches excellently with the experimental evidence. The most important part of the present work is that it acts as an efficient guide about the processing route that should be used to form an intended phase in a particular alloy via the critical cooling rate Rc obtained through the predicted TTT diagrams. Further, two alloys (AlCoCrFeNi and CoCrFeMnNi) could not be vitrified even via melt spinning route as predicted by the model. Almost all the equiatomic alloys found so far ranging from ternary to octanary according to literature have been studied by the present model. The phase formation in most of the alloys has been predicted correctly by the model.



中文翻译:

高熵合金中的相预测–动力学方法

已经开发出一种简单且完全可预测的模型来预测多组分等原子合金是形成单相BCC,FCC,HCP还是形成两个或多个固溶体相或金属间化合物(IM)或非晶相的组合。该方法基于合金的粘度随温度的变化,利用其构成元素的粘度,并适当地结合晶体结构信息。将影响合金粘度的其他一些参数(例如构成元素的原子大小,晶胞的堆积密度等)适当地纳入模型中。温度-时间转变(TTT)图是借助五个经过广泛实验检验的合金(CoCrCuFeNi,CoCrFeMnNi,AlCoCrFeNi,AlCuMgMnZn和ZrTiCuNiBe)的粘度数据生成的。还考虑了形成优选的低阶合金的机会。在这方面,已经研究了可以由构成元素形成的所有可能的二元至五元合金。该模型已很好地预测了这些合金中单相BCC,FCC的形成或多相,IM或非晶相的形成。还已经发现,AlCuMgMnZn合金更喜欢形成许多具有稀有HCP相的IM,这与实验证据非常匹配。本工作最重要的部分是,它可作为有效的工艺路线指南,用于通过临界冷却速率在特定合金中形成预期相的工艺路线 已经研究了所有可能由构成元素形成的二元至五元合金。该模型已很好地预测了这些合金中单相BCC,FCC的形成或多相,IM或非晶相的形成。还已经发现,AlCuMgMnZn合金倾向于形成许多具有稀有HCP相的IM,这与实验证据非常匹配。本工作最重要的部分是,它可作为有效的工艺路线指南,用于通过临界冷却速率在特定合金中形成预期相的工艺路线 已经研究了所有可能由构成元素形成的二元至五元合金。该模型已很好地预测了这些合金中单相BCC,FCC的形成或多相,IM或非晶相的形成。还已经发现,AlCuMgMnZn合金更喜欢形成许多具有稀有HCP相的IM,这与实验证据非常匹配。本工作最重要的部分是,它可作为有效的工艺路线指南,用于通过临界冷却速率在特定合金中形成预期相的工艺路线 该模型已很好地预测了这些合金中的IMs或非晶相。还已经发现,AlCuMgMnZn合金更喜欢形成许多具有稀有HCP相的IM,这与实验证据非常匹配。本工作最重要的部分是,它可作为有效的工艺路线指南,用于通过临界冷却速率在特定合金中形成预期相的工艺路线 该模型已很好地预测了这些合金中的IMs或非晶相。还已经发现,AlCuMgMnZn合金更喜欢形成许多具有稀有HCP相的IM,这与实验证据非常匹配。本工作最重要的部分是,它可作为有效的工艺路线指南,用于通过临界冷却速率在特定合金中形成预期相的工艺路线通过预测的TTT图获得的R c。此外,如模型所预测的那样,即使通过熔融纺丝路径,也无法对两种合金(AlCoCrFeNi和CoCrFeMnNi)进行玻璃化。迄今为止,根据本模型,已经研究了根据文献发现的几乎所有从三元到八元的等原子合金。该模型已正确预测了大多数合金中的相形成。

更新日期:2018-05-04
down
wechat
bug