当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable quantum criticality and super-ballistic transport in a “charge” Kondo circuit
Science ( IF 56.9 ) Pub Date : 2018-05-03 , DOI: 10.1126/science.aan5592
Z. Iftikhar 1 , A. Anthore 1, 2 , A. K. Mitchell 3 , F. D. Parmentier 1 , U. Gennser 1 , A. Ouerghi 1 , A. Cavanna 1 , C. Mora 4 , P. Simon 5 , F. Pierre 1
Affiliation  

A nanostructure quantum simulator Phase transitions occurring at absolute zero temperature, or quantum phase transitions (QPTs), can be grouped into broad categories called universality classes. The classification is based on the properties of the transition rather than the microscopic details of the underlying system. Iftikhar et al. exploited this fact to study QPTs in clean, tunable nanostructures, rather than in complex materials, where they most often occur. Within a single nanostructure, two different classes of QPTs with profoundly different characters were studied and comprehensively characterized. Science, this issue p. 1315 Nanostructures are used for the simulation of two very different classes of second-order phase transitions. Quantum phase transitions (QPTs) are ubiquitous in strongly correlated materials. However, the microscopic complexity of these systems impedes the quantitative understanding of QPTs. We observed and thoroughly analyzed the rich strongly correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. An unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly correlated phenomena.

中文翻译:

“电荷”近藤电路中的可调量子临界性和超弹道传输

纳米结构量子模拟器 发生在绝对零温度下的相变或量子相变 (QPT),可以分为称为普遍性类别的广泛类别。分类是基于过渡的属性而不是底层系统的微观细节。伊夫蒂哈尔等人。利用这一事实来研究清洁、可调纳米结构中的 QPT,而不是它们最常出现的复杂材料。在单个纳米结构中,研究并综合表征了两种性质截然不同的 QPT。科学,这个问题 p。1315 纳米结构用于模拟两种截然不同的二阶相变。量子相变 (QPT) 在强相关材料中无处不在。然而,这些系统的微观复杂性阻碍了对 QPT 的定量理解。我们在两个截然不同的量子临界状态中观察并彻底分析了丰富的强相关物理学。通过为三通道 Kondo 模型实现量子模拟器的电路,我们揭示了针对不同低温固定点和量子临界性的多个交叉点的通用缩放。发现了对弹道自由电子的最大电导的意外违反。近藤杂质的当前电荷赝自旋实现打开了对各种强相关现象的访问。我们在两个截然不同的量子临界状态中观察并彻底分析了丰富的强相关物理学。通过为三通道 Kondo 模型实现量子模拟器的电路,我们揭示了针对不同低温固定点和量子临界性的多个交叉点的通用缩放。发现了对弹道自由电子的最大电导的意外违反。近藤杂质的当前电荷赝自旋实现打开了对各种强相关现象的访问。我们在两个截然不同的量子临界状态中观察并彻底分析了丰富的强相关物理学。通过为三通道 Kondo 模型实现量子模拟器的电路,我们揭示了针对不同低温固定点和沿着量子临界性的多个交叉的通用缩放。发现了对弹道自由电子的最大电导的意外违反。近藤杂质的当前电荷赝自旋实现打开了对各种强相关现象的访问。发现了对弹道自由电子的最大电导的意外违反。近藤杂质的当前电荷赝自旋实现打开了对各种强相关现象的访问。发现了对弹道自由电子的最大电导的意外违反。近藤杂质的当前电荷赝自旋实现打开了对各种强相关现象的访问。
更新日期:2018-05-03
down
wechat
bug