当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Mesenchymal Stem Cell Spheroids by Incorporation of Mechanoregulator Microparticles
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2018-05-03
Fatemeh Abbasi, Mohammad Hossein Ghanian, Hossein Baharvand, Bahman Vahidi, Mohamadreza Baghaban Eslaminejad

Mechanical forces throughout human mesenchymal stem cell (hMSC) spheroids (mesenspheres) play a predominant role in determining cellular functions of cell growth, proliferation, and differentiation through mechanotransductional mechanisms. Here, we introduce microparticle (MP) incorporation as a mechanical intervention method to alter tensional homeostasis of the mesensphere and explore MSC differentiation in response to MP stiffness. The microparticulate mechanoregulators with different elastic modulus (34 kPa, 0.6 MPa, and 2.2 MPa) were prepared by controlled crosslinking cell-sized microdroplets of polydimethylsiloxane (PDMS). Preparation of MP-MSC composite spheroids enabled us to study the possible effects of MPs through experimental and computational assays. Our results showed that MP incorporation selectively primed MSCs toward osteogenesis, yet hindered adipogenesis. Interestingly, this behavior depended on MP mechanics, as the spheroids that contained MPs with intermediate stiffness behaved similar to control MP-free mesenspheres with more tendencies toward chondrogenesis. However, by using the soft or stiff MPs, the MP-mesenspheres significantly showed signs of osteogenesis. This could be explained by the complex of forces which acted in the cell spheroid and, totally, provided a homeostasis situation. Incorporation of cell-sized polymer MPs as mechanoregulators of cell spheroids could be utilized as a new engineering toolkit for multicellular organoids in disease modeling and tissue engineering applications.



中文翻译:

通过掺入机械力调节器微粒来工程化间充质干细胞球体

整个人间充质干细胞(hMSC)球体(中脑)的机械力在通过机械转导机制确定细胞生长,增殖和分化的细胞功能中起主要作用。在这里,我们介绍了引入微粒(MP)作为一种机械干预方法,以改变中膜的张力稳态,并探索对MP僵硬度做出反应的MSC分化。通过控制交联细胞大小的聚二甲基硅氧烷(PDMS)的微滴,制备了具有不同弹性模量(34 kPa,0.6 MPa和2.2 MPa)的微粒机械化剂。MP-MSC复合球体的制备使我们能够通过实验和计算分析来研究MPs的可能作用。我们的研究结果表明,MP掺入选择性地促成MSC趋向成骨,却阻碍了脂肪的生成。有趣的是,此行为取决于MP力学,因为包含中等硬度的MP的球体的行为类似于无MP的中球,其软骨形成倾向更大。然而,通过使用软的或硬的MP,MP中脑明显显示出成骨的迹象。这可以通过作用在细胞球体中的力的复杂性来解释,并且总的来说提供了稳态。结合细胞大小的聚合物MP作为细胞球体的机械调节器,可以用作疾病建模和组织工程应用中多细胞类器官的新工程工具包。因为包含中等硬度MP的球体的行为类似于无MP的中球,其软骨形成的趋势更大。然而,通过使用软的或硬的MP,MP中脑明显显示出成骨的迹象。这可以通过作用在细胞球体中的力的复杂性来解释,并且总的来说提供了稳态。结合细胞大小的聚合物MP作为细胞球体的机械调节器,可以用作疾病建模和组织工程应用中多细胞类器官的新工程工具包。因为包含中等硬度MP的球体的行为类似于无MP的中球,其软骨形成的趋势更大。然而,通过使用软的或硬的MP,MP中脑明显显示出成骨的迹象。这可以通过作用在细胞球体中的力的复杂性来解释,并且总的来说提供了稳态。结合细胞大小的聚合物MP作为细胞球体的机械调节器,可以用作疾病建模和组织工程应用中多细胞类器官的新工程工具包。总体而言,提供了稳态。结合细胞大小的聚合物MP作为细胞球体的机械调节器,可以用作疾病建模和组织工程应用中多细胞类器官的新工程工具包。总体而言,提供了稳态。结合细胞大小的聚合物MP作为细胞球体的机械调节器,可以用作疾病建模和组织工程应用中多细胞类器官的新工程工具包。

更新日期:2018-05-03
down
wechat
bug