当前位置: X-MOL 学术Biosens. Bioelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discrimination of single nucleotide mismatches using a scalable, flexible, and transparent three-dimensional nanostructure-based plasmonic miRNA sensor with high sensitivity
Biosensors and Bioelectronics ( IF 12.6 ) Pub Date : 2018-04-22
Hee-Kyung Na, Jung-Sub Wi, Hye Young Son, Jong G. Ok, Yong-Min Huh, Tae Geol Lee

Localized surface plasmon resonance (LSPR) biosensors have attracted much interest due to their capacity for multiplexing, miniaturization, and high performance, which offers the potential for their integration into lab-on-a-chip platforms for point-of-care (POC) diagnostics. The need for microRNA (miRNA)-sensing platforms is particularly urgent because miRNAs are key regulators and biomarkers in numerous pathological processes and diseases. Unfortunately, however, development of such miRNA-sensing platforms has not yet been achieved. In order to realize the detection of these important biomarkers, there has been an increasing demand for POC-sensing platforms that enable label-free quantification with low sample consumption, good sensitivity, real-time responsiveness, and high throughput. Here, we developed a highly specific, sensitive LSPR miRNA-sensing platform on a flexible, scalable plasmonic nanostructure to enable single-base mismatch discrimination and attomole detection of miRNAs in clinically relevant samples. The hairpin probe contained a locked nucleic acid (LNA) that enabled the discrimination of single base mismatches based on differences in melting temperatures of perfectly matched or single base mismatched miRNAs when they formed base pairs with probes. In addition, through hybridization induced signal amplification based on precipitate formation on the gold surface through the enzyme reaction, we observed a dramatic LSPR peak shift, which enabled attomole detection. Additionally, our LSPR miRNA sensor enabled the detection of miR-200a-3p in total RNA extracts from primary cancer cell lines without purification or labeling of the miRNA. This label-free and highly specific miRNA sensing platform may have applications in POC cancer diagnostics without the need for gene amplification.



中文翻译:

使用可扩展,灵活且透明的基于三维纳米结构的等离激元miRNA传感器,以高灵敏度识别单核苷酸错配

局部表面等离振子共振(LSPR)生物传感器因其具有多路复用,小型化和高性能的能力而引起了人们的极大兴趣,这为将其集成到用于即时医疗(POC)的芯片实验室平台中提供了潜力诊断。对microRNA(miRNA)传感平台的需求尤其迫切,因为miRNA是许多病理过程和疾病中的关键调节剂和生物标志物。然而,不幸的是,尚未实现这种miRNA传感平台的开发。为了实现对这些重要生物标记物的检测,对POC传感平台的需求不断增长,该平台可实现无标签定量,样品消耗低,灵敏度高,实时响应性强和通量高的特点。在这里,我们开发了一个非常具体的 灵活的,可扩展的等离激元纳米结构上的灵敏LSPR miRNA传感平台,可对临床相关样品中的miRNA进行单碱基错配判别和attomole检测。发夹探针包含锁定核酸(LNA),该核酸能够根据完全匹配或单碱基错配的miRNA与探针形成碱基对时的融解温度差异来区分单碱基错配。另外,通过基于酶反应在金表面上形成沉淀物的杂交诱导的信号放大,我们观察到了显着的LSPR峰位移,这使得能够检测原子。此外,我们的LSPR miRNA传感器可以检测 可扩展的等离子纳米结构,可对临床相关样品中的miRNA进行单碱基错配判别和attomole检测。发夹探针包含锁定核酸(LNA),该核酸能够根据完全匹配或单碱基错配的miRNA与探针形成碱基对时的融解温度差异来区分单碱基错配。另外,通过基于酶反应在金表面上形成沉淀物的杂交诱导的信号放大,我们观察到了显着的LSPR峰位移,这使得能够检测原子。此外,我们的LSPR miRNA传感器可以检测 可扩展的等离子纳米结构,可对临床相关样品中的miRNA进行单碱基错配判别和attomole检测。发夹探针包含锁定核酸(LNA),该核酸能够根据完全匹配或单碱基错配的miRNA与探针形成碱基对时的融解温度差异来区分单碱基错配。另外,通过基于酶反应在金表面上形成沉淀物的杂交诱导的信号放大,我们观察到了显着的LSPR峰位移,这使得能够检测原子。此外,我们的LSPR miRNA传感器可以检测 发夹探针包含锁定核酸(LNA),该核酸能够根据完全匹配或单碱基错配的miRNA与探针形成碱基对时的融解温度差异来区分单碱基错配。另外,通过基于酶反应在金表面上形成沉淀物的杂交诱导的信号放大,我们观察到了显着的LSPR峰位移,这使得能够检测原子。此外,我们的LSPR miRNA传感器可以检测 发夹探针包含锁定核酸(LNA),该核酸能够根据完全匹配或单碱基错配的miRNA与探针形成碱基对时的融解温度差异来区分单碱基错配。另外,通过基于酶反应在金表面上形成沉淀物的杂交诱导的信号放大,我们观察到了显着的LSPR峰位移,这使得能够检测原子。此外,我们的LSPR miRNA传感器可以检测 启用了attomole检测。此外,我们的LSPR miRNA传感器可以检测 启用了attomole检测。此外,我们的LSPR miRNA传感器可以检测未纯化或未标记miRNA的原代癌细胞系总RNA提取物中的miR-200a-3p。这种无标签且高度特异性的miRNA传感平台可在POC癌症诊断中应用,而无需进行基因扩增。

更新日期:2018-04-25
down
wechat
bug