当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices
npj Computational Materials ( IF 9.7 ) Pub Date : 2018-04-23 , DOI: 10.1038/s41524-018-0079-6
Chilin Li , Keyi Chen , Xuejun Zhou , Joachim Maier

Exploring electrochemically driven conversion reactions for the development of novel energy storage materials is an important topic as they can deliver higher energy densities than current Li-ion battery electrodes. Conversion-type fluorides promise particularly high energy densities by involving the light and small fluoride anion, and bond breaking can occur at relatively low Li activity (i.e., high cell voltage). Cells based on such electrodes may become competitors to other envisaged alternatives such as Li-sulfur or Li-air systems with their many unsolved thermodynamic and kinetic problems. Relevant conversion reactions are typically multiphase redox reactions characterized by nucleation and growth processes along with pronounced interfacial and mass transport phenomena. Hence significant overpotentials and nonequilibrium reaction pathways are involved. In this review, we summarize recent findings in terms of phase evolution phenomena and mechanistic features of (oxy)fluorides at different redox stages during the conversion process, enabled by advanced characterization technologies and simulation methods. It can be concluded that well-designed nanostructured architectures are helpful in mitigating kinetic problems such as the usually pronounced voltage hysteresis. In this context, doping and open-framework strategies are useful. By these tools, simple materials that are unable to allow for substantial Li nonstoichiometry (e.g., by Li-insertable channels) may be turned into electroactive materials.



中文翻译:

储能装置氟化物电极中的电化学驱动转化反应

探索电化学驱动的转化反应以开发新型储能材料是一个重要的课题,因为它们可以提供比当前锂离子电池电极更高的能量密度。转化型氟化物通过包含轻和小的氟化物阴离子而保证了特别高的能量密度,并且在相对较低的Li活性(即高电池电压)下会发生键断裂。基于此类电极的电池由于其许多未解决的热力学和动力学问题,可能会成为其他设想的替代方案(如锂硫或锂空气系统)的竞争者。相关的转化反应通常是多相氧化还原反应,其特征在于成核和生长过程以及明显的界面和传质现象。因此,涉及显着的超电势和非平衡反应途径。在这篇综述中,我们通过先进的表征技术和模拟方法,总结了在转换过程中不同氧化还原阶段的(氧)氟化物的相演化现象和机理特征方面的最新发现。可以得出结论,精心设计的纳米结构有助于缓解动力学问题,例如通常明显的电压滞后现象。在这种情况下,掺杂和开放框架策略是有用的。通过这些工具,不能允许基本的非锂化学计量的简单材料(例如,通过不可插入锂的通道)可以变成电活性材料。我们通过先进的表征技术和模拟方法,总结了在相变现象和转换过程中不同氧化还原阶段氟化氧的机理特征方面的最新发现。可以得出结论,设计良好的纳米结构有助于缓解动力学问题,例如通常明显的电压迟滞。在这种情况下,掺杂和开放框架策略是有用的。通过这些工具,不能允许基本的非锂化学计量的简单材料(例如,通过不可插入锂的通道)可以变成电活性材料。我们通过先进的表征技术和模拟方法,总结了在相变现象和转换过程中不同氧化还原阶段氟化氧的机理特征方面的最新发现。可以得出结论,设计良好的纳米结构有助于缓解动力学问题,例如通常明显的电压迟滞。在这种情况下,掺杂和开放框架策略是有用的。通过这些工具,不能允许基本的非锂化学计量的简单材料(例如,通过不可插入锂的通道)可以变成电活性材料。可以得出结论,设计良好的纳米结构有助于缓解动力学问题,例如通常明显的电压迟滞。在这种情况下,掺杂和开放框架策略是有用的。通过这些工具,不能允许基本的非锂化学计量的简单材料(例如,通过不可插入锂的通道)可以变成电活性材料。可以得出结论,设计良好的纳米结构有助于缓解动力学问题,例如通常明显的电压迟滞。在这种情况下,掺杂和开放框架策略是有用的。通过这些工具,不能允许基本的非锂化学计量的简单材料(例如,通过不可插入锂的通道)可以变成电活性材料。

更新日期:2018-04-23
down
wechat
bug