当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Meniscus-on-Demand Parallel 3D Nanoprinting
ACS Nano ( IF 17.1 ) Pub Date : 2018-04-19 00:00:00 , DOI: 10.1021/acsnano.8b00706
Mojun Chen 1 , Zhaoyi Xu 1 , Jung Hyun Kim 2, 3 , Seung Kwon Seol 2, 3 , Ji Tae Kim 1
Affiliation  

Exploiting a femtoliter liquid meniscus formed on a nanopipet is a powerful approach to spatially control mass transfer or chemical reaction at the nanoscale. However, the insufficient reliability of techniques for the meniscus formation still restricts its practical use. We report on a noncontact, programmable method to produce a femtoliter liquid meniscus that is utilized for parallel three-dimensional (3D) nanoprinting. The method based on electrohydrodynamic dispensing enables one to create an ink meniscus at a pipet–substrate gap without physical contact and positional feedback. By guiding the meniscus under rapid evaporation of solvent in air, we successfully fabricate freestanding polymer 3D nanostructures. After a quantitative characterization of the experimental conditions, we show that we can use a multibarrel pipet to achieve parallel fabrication process of clustered nanowires with precise placement. We expect this technique to advance productivity in nanoscale 3D printing.

中文翻译:

按需弯月面并行3D纳米打印

利用毫微吸管上形成的飞升液体弯液面是在纳米级上空间控制传质或化学反应的有效方法。但是,弯液面形成技术的可靠性不足仍然限制了其实际应用。我们报告了一种非接触式可编程方法,以产生用于并行三维(3D)纳米打印的飞升液体弯月面。基于电动液力分配的方法使人们能够在移液器-基材间隙处产生墨水弯月面,而无需物理接触和位置反馈。通过引导弯月面在空气中迅速蒸发的溶剂下,我们成功地制造了独立式聚合物3D纳米结构。在对实验条件进行定量表征后,我们表明,我们可以使用多管移液器以精确的位置实现簇状纳米线的并行制造过程。我们希望这项技术能够提高纳米级3D打印的生产率。
更新日期:2018-04-19
down
wechat
bug