当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growth and current production of mixed culture anodic biofilms remain unaffected by sub-microscale surface roughness
Bioelectrochemistry ( IF 5 ) Pub Date : 2018-04-12 , DOI: 10.1016/j.bioelechem.2018.04.002
Mélanie Pierra , Mehdi Golozar , Xu Zhang , Antonin Prévoteau , Michael De Volder , Dominiek Reynaerts , Korneel Rabaey

Bioelectrochemical systems couple electricity demand/supply to the metabolic redox reactions of microorganisms. Generally, electrodes act not only as electron acceptors/donors, but also as physical support for an electroactive biofilm. The microorganism-electrode interface can be modified by changing the chemical and/or topographical features of the electrode surface. Thus far, studies have reported conflicting results on the impact of the electrode surface roughness on the growth and current production of biofilms. Here, the surface roughness of the glassy carbon electrodes was successfully modified at the sub-microscale using micro electrodischarge machining, while preserving the surface chemistry of the parent glassy carbon. All microbial electrodes showed similar startup time, maximum current density, charge transport ability across the biofilm and biomass production. Interestingly, an increase in the average surface cavity depth was observed for the biofilm top layer as a function of the electrode surface roughness (from 7 μm to 16 μm for a surface roughness of 5 nm to 682 nm, respectively). These results indicated that the surface roughness at a sub-microscale does not significantly impact the attachment or current production of mixed culture anodic biofilms on glassy carbon. Likely earlier observations were associated with changes in surface chemistry, rather than surface topography.



中文翻译:

混合培养阳极生物膜的生长和当前生产仍不受亚微米级表面粗糙度的影响

生物电化学系统将电力需求/供应耦合到微生物的代谢氧化还原反应。通常,电极不仅充当电子受体/施主,而且充当电活性生物膜的物理载体。可以通过改变电极表面的化学和/或形貌特征来修饰微生物-电极界面。迄今为止,研究已经报道了电极表面粗糙度对生物膜的生长和当前产量的影响相互矛盾的结果。在此,使用微放电加工成功地在亚微米级上修饰了玻璃碳电极的表面粗糙度,同时保留了母体玻璃碳的表面化学性质。所有微生物电极显示相似的启动时间,最大电流密度,跨生物膜和生物质生产的电荷迁移能力。有趣的是,观察到生物膜顶层的平均表面腔深度随电极表面粗糙度的变化而变化(对于5 nm至682 nm的表面粗糙度,分别为7μm至16μm)。这些结果表明亚微米级的表面粗糙度不会显着影响玻璃碳上混合培养阳极生物膜的附着或当前生产。较早的观察结果可能与表面化学变化有关,而不是与表面形貌有关。这些结果表明亚微米级的表面粗糙度不会显着影响玻璃碳上混合培养阳极生物膜的附着或当前生产。较早的观察结果可能与表面化学变化有关,而不是与表面形貌有关。这些结果表明亚微米级的表面粗糙度不会显着影响玻璃碳上混合培养阳极生物膜的附着或当前生产。较早的观察结果可能与表面化学变化有关,而不是与表面形貌有关。

更新日期:2018-04-12
down
wechat
bug