当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elastic strain engineering for ultralow mechanical dissipation
Science ( IF 56.9 ) Pub Date : 2018-04-12 , DOI: 10.1126/science.aar6939
A. H. Ghadimi 1 , S. A. Fedorov 1 , N. J. Engelsen 1 , M. J. Bereyhi 1 , R. Schilling 1 , D. J. Wilson 2 , T. J. Kippenberg 1
Affiliation  

Better performance under stress Engineering stress or strain into materials can improve their performance. Adding mechanical stress to silicon chips, for instance, produces transistors with enhanced electron mobility. Ghadimi et al. explore the possibility of enhancing the vibrational properties of a micromechanical oscillator by engineering stress within the structure (see the Perspective by Eichler). By careful design of the micromechanical oscillator, and by building in associated stresses, exceptional vibrational properties can be produced. Such enhanced oscillators could be used as exquisite force sensors. Science, this issue p. 764; see also p. 706 Engineered stress is used to fabricate micromechanical oscillators with enhanced vibrational properties. Extreme stresses can be produced in nanoscale structures; this feature has been used to realize enhanced materials properties, such as the high mobility of silicon in modern transistors. We show how nanoscale stress can be used to realize exceptionally low mechanical dissipation when combined with “soft-clamping”—a form of phononic engineering. Specifically, using a nonuniform phononic crystal pattern, we colocalize the strain and flexural motion of a free-standing silicon nitride nanobeam. Ringdown measurements at room temperature reveal string-like vibrational modes with quality (Q) factors as high as 800 million and Q × frequency exceeding 1015 hertz. These results illustrate a promising route for engineering ultracoherent nanomechanical devices.

中文翻译:

用于超低机械耗散的弹性应变工程

更好的应力下性能 工程应力或材料应变可以提高它们的性能。例如,向硅芯片添加机械应力会产生具有增强电子迁移率的晶体管。加迪米等人。探索通过结构内的工程应力增强微机械振荡器振动特性的可能性(参见 Eichler 的观点)。通过精心设计微机械振荡器,并通过建立相关的应力,可以产生特殊的振动特性。这种增强型振荡器可以用作精致的力传感器。科学,这个问题 p。764; 另见第。706 工程应力用于制造具有增强振动特性的微机械振荡器。在纳米级结构中可以产生极端应力;此功能已用于实现增强的材料特性,例如现代晶体管中硅的高迁移率。我们展示了如何使用纳米级应力与“软夹紧”(一种声子工程形式)相结合来实现极低的机械耗散。具体来说,使用非均匀声子晶体图案,我们共定位了独立氮化硅纳米束的应变和弯曲运动。室温下的衰荡测量揭示了质量(Q)因子高达 8 亿和 Q × 频率超过 1015 赫兹的弦状振动模式。这些结果说明了设计超相干纳米机械设备的有希望的途径。我们展示了如何使用纳米级应力与“软夹紧”(一种声子工程形式)相结合来实现极低的机械耗散。具体来说,使用非均匀声子晶体图案,我们共定位了独立氮化硅纳米束的应变和弯曲运动。室温下的衰荡测量揭示了质量(Q)因子高达 8 亿和 Q × 频率超过 1015 赫兹的弦状振动模式。这些结果说明了设计超相干纳米机械设备的有希望的途径。我们展示了如何使用纳米级应力与“软夹紧”(一种声子工程形式)相结合来实现极低的机械耗散。具体来说,使用非均匀声子晶体图案,我们共定位了独立氮化硅纳米束的应变和弯曲运动。室温下的衰荡测量揭示了质量(Q)因子高达 8 亿和 Q × 频率超过 1015 赫兹的弦状振动模式。这些结果说明了设计超相干纳米机械设备的有希望的途径。室温下的衰荡测量揭示了质量 (Q) 因子高达 8 亿且 Q × 频率超过 1015 赫兹的弦状振动模式。这些结果说明了设计超相干纳米机械设备的有希望的途径。室温下的衰荡测量揭示了质量(Q)因子高达 8 亿和 Q × 频率超过 1015 赫兹的弦状振动模式。这些结果说明了设计超相干纳米机械设备的有希望的途径。
更新日期:2018-04-12
down
wechat
bug