当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluating the potential of using quantum dots for monitoring electrical signals in neurons
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2018-04-10 , DOI: 10.1038/s41565-018-0107-1
Alexander L. Efros , James B. Delehanty , Alan L. Huston , Igor L. Medintz , Mladen Barbic , Timothy D. Harris

Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.



中文翻译:

评估使用量子点监测神经元电信号的潜力

旨在提供对大脑的高级了解的项目的成功直接取决于纳米技术的关键进展。该“观点”通过考虑传感神经元膜电压的基本问题,解决了神经科学和纳米材料的独特界面,并提供了可能由原型纳米材料促进的潜在解决方案。尽管有了实质性的改进,但无论是在细胞培养还是在体内,单个神经元内瞬时电压变化的高速可视化在单细胞和网络水平上都仍然是复杂且有问题的。半导体量子点(QD)的独特性质使其成为用于生物成像的强大荧光团。但是,没有得到广泛认可的是,QD光致发光对近端电场非常敏感。此属性应适合于感测在活动神经元膜中发生的电压变化。在这里,我们研究了QD在解决实时光电压成像的重要挑战方面的潜在作用。

更新日期:2018-04-11
down
wechat
bug