当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerosol-Assisted Synthesis of Submicron Particles at Room Temperature Using Ultra-Fine Liquid Atomization
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2018-04-10
Maksim Mezhericher, Janine K. Nunes, Jan J. Guzowski, Howard A. Stone

Aerosol-assisted particle technologies are common in commercial atomizing devices for producing micron-sized droplets, which upon evaporation of solvent typically yield particles in the micron to submicron range obtained from a process of droplet-to-particle conversion. In this paper, we demonstrate a technology that allows room-temperature manufacturing of particles O(100-500) nm in diameter by generating and drying of submicron droplet aerosols. As measured for water atomization, the produced droplets of O(200) nm in mean diameter are an order of magnitude smaller than 3-5 µm water droplets usually obtained from commercial atomizers and nebulizers. This reduction in droplet size promotes evaporation of solvent around two orders of magnitude faster than for the droplets produced by conventional atomization devices. Such rapid solvent evaporation enables formation of submicron particles even in the limit of room temperature drying conditions in a compact laboratory-scale setup, as we demonstrate in this study for sodium chloride and silica and titania xerogel particles. Ultra-fine diameters of the generated droplets enable the usage of more concentrated precursor solutions, e.g. ten or even one hundred times, to obtain the same final particle size as conventional aerosol-assisted setups. Based on the experimental study, we establish mathematical expressions correlating the mean particle size and production capacity with solute concentration in the precursor, physical properties of the solution and the atomizing air pressure. Finally, we compare and demonstrate the advantages of the developed system over the existing aerosol-assisted processes in terms of smaller particle size, larger overall and specific production capacities, and higher estimated energy efficiency. The results suggest that this economical and scalable method can be utilized for aerosol-assisted submicron particle synthesis in different applications.



中文翻译:

超细液体雾化在室温下气溶胶辅助合成亚微米颗粒

气雾辅助颗粒技术在用于产生微米级液滴的商业雾化装置中很常见,其在溶剂蒸发后通常产生从液滴至颗粒转化过程获得的微米至亚微米范围内的颗粒。在本文中,我们演示了一种技术,该技术可通过产生和干燥亚微米液滴气溶胶来室温制造直径为O(100-500)nm的颗粒。根据水雾化的测量结果,产生的O的液滴(200)nm的平均直径比通常从商用雾化器和雾化器获得的3-5 µm水滴小一个数量级。液滴尺寸的这种减小促使溶剂的蒸发比常规雾化装置产生的液滴快约两个数量级。如此快速的溶剂蒸发,即使在紧凑的实验室规模设置中,即使在室温干燥条件的限制下,也能形成亚微米颗粒,正如我们在本研究中对氯化钠,二氧化硅和二氧化钛干凝胶颗粒所证明的。产生的液滴的超细直径使得能够使用更浓缩的前体溶液,例如十倍甚至一百倍,以获得与传统气雾剂辅助装置相同的最终粒径。根据实验研究,我们建立了将平均粒径和生产能力与前体中的溶质浓度,溶液的物理性质和雾化气压相关联的数学表达式。最后,我们在较小的颗粒尺寸,较大的整体和特定生产能力以及较高的估计能源效率方面比较并证明了开发的系统相对于现有气溶胶辅助工艺的优势。结果表明,这种经济且可扩展的方法可用于不同应用中的气溶胶辅助亚微米颗粒合成。我们比较并证明了所开发系统相对于现有气雾剂辅助工艺的优势,包括较小的粒径,较大的整体和特定生产能力以及较高的估计能效。结果表明,这种经济且可扩展的方法可用于不同应用中的气溶胶辅助亚微米颗粒合成。我们比较并证明了所开发系统相对于现有气雾剂辅助工艺的优势,包括较小的粒径,较大的整体和特定生产能力以及较高的估计能效。结果表明,这种经济且可扩展的方法可用于不同应用中的气溶胶辅助亚微米颗粒合成。

更新日期:2018-04-10
down
wechat
bug