当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile synthesis of Au@α-Fe 2 O 3 @RGO ternary nanocomposites for enhanced electrochemical sensing of caffeic acid toward biomedical applications
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.jallcom.2018.04.052
G. Bharath , Emad Alhseinat , Rajesh Madhu , Samuel M. Mugo , Saleh Alwasel , Abdel Halim Harrath

Abstract Demonstrated herewith is a novel eco-friendly Au@α-Fe2O3@RGO ternary nanocomposites using chlorophyll as reductants and stabilizers. Systematic characterizations studies confirm Au and α-Fe2O3 nanoparticles are uniformly decorated on the surfaces of reduced graphene oxide (RGO) nanosheets. As a proof-of-concept, the developed Au@α-Fe2O3@RGO ternary nanocomposites were coated on a glass carbon electrode (GCE) and evaluated for electrochemical detection of caffeic acid. The electrochemical mechanism involves the synergistic electrocatalytic activity of Au and α-Fe2O3 towards caffeic acid oxidation, with the RGO serving as an efficient electron shuttling mediator–enhancing the sensor performance. The Au@α-Fe2O3@RGO modified GCE caffeic acid sensor exhibited a wide linear response range of 19–1869 μM, sensitivity of 315 μA μM−1 cm-2, and a detection limit of 0.098 μM at very low potential of 0.21 V. This ternary nanocomposite provides high catalytic performance as well as excellent selectivity toward caffeic acid. To demonstrate real life application of the Fe2O3@RGO modified GCE caffeic acid sensor, caffeic acid in a coffee sample was measured. The α-Fe2O3, Au-NPs, and conductive graphene sheets composites, result in a highly catalytic and stable electrode system, with no pulverization problems. As such, it is demonstrated herewith that the Fe2O3@RGO ternary nanocomposite electrode is rapid, highly stable, and sensitive, with promised for utilization in fabrication of other multifarious biosensors.

中文翻译:

轻松合成 Au@α-Fe 2 O 3 @RGO 三元纳米复合材料,以增强咖啡酸对生物医学应用的电化学传感

摘要 本文展示了一种使用叶绿素作为还原剂和稳定剂的新型环保 Au@α-Fe2O3@RGO 三元纳米复合材料。系统表征研究证实,Au 和 α-Fe2O3 纳米颗粒均匀地装饰在还原氧化石墨烯 (RGO) 纳米片的表面上。作为概念验证,将开发的 Au@α-Fe2O3@RGO 三元纳米复合材料涂覆在玻璃碳电极 (GCE) 上,并评估其对咖啡酸的电化学检测。电化学机制涉及 Au 和 α-Fe2O3 对咖啡酸氧化的协同电催化活性,RGO 作为有效的电子穿梭介质 - 提高了传感器性能。Au@α-Fe2O3@RGO 修饰的 GCE 咖啡酸传感器表现出 19-1869 μM 的宽线性响应范围,灵敏度为 315 μA μM-1 cm-2,在 0.21 V 的极低电位下检测限为 0.098 μM。这种三元纳米复合材料具有高催化性能以及对咖啡酸的出色选择性。为了证明 Fe2O3@RGO 改进的 GCE 咖啡酸传感器在现实生活中的应用,我们测量了咖啡样品中的咖啡酸。α-Fe2O3、Au-NPs 和导电石墨烯片复合材料形成了高度催化和稳定的电极系统,没有粉化问题。因此,本文证明 Fe2O3@RGO 三元纳米复合电极具有快速、高度稳定和灵敏的特点,有望用于制造其他多种生物传感器。为了证明 Fe2O3@RGO 改进的 GCE 咖啡酸传感器在现实生活中的应用,我们测量了咖啡样品中的咖啡酸。α-Fe2O3、Au-NPs 和导电石墨烯片复合材料形成了高度催化和稳定的电极系统,没有粉化问题。因此,本文证明 Fe2O3@RGO 三元纳米复合电极具有快速、高度稳定和灵敏的特点,有望用于制造其他多种生物传感器。为了证明 Fe2O3@RGO 改进的 GCE 咖啡酸传感器在现实生活中的应用,我们测量了咖啡样品中的咖啡酸。α-Fe2O3、Au-NPs 和导电石墨烯片复合材料形成了高度催化和稳定的电极系统,没有粉化问题。因此,本文证明 Fe2O3@RGO 三元纳米复合电极具有快速、高度稳定和灵敏的特点,有望用于制造其他多种生物传感器。
更新日期:2018-06-01
down
wechat
bug