当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of absorption refrigeration cycles for efficient air-cooled solar cooling
Solar Energy ( IF 6.7 ) Pub Date : 2018-04-07
Z.Y. Xu, R.Z. Wang

Absorption chiller is a widely used technology owing to its capability to utilize low grade thermal energy including solar thermal energy and waste heat. Yet, most solar absorption cooling systems need cooling tower to dissipate heat rejection into ambient. The use of cooling tower increases both the initial investment and water consumption, which can be improved by air-cooled solar absorption cooling system. In this paper, to give the best absorption cycle options under different conditions, five absorption refrigeration cycles suitable for air-cooled solar cooling including three double lift absorption cycles and two semi-GAX (Generator-Absorber heat eXchange) absorption cycles were compared. Steady-state simulation is carried out. Efficiencies of these cycles were calculated with LiBr-water and water-ammonia working pairs in the scenario of air-cooled solar cooling. Heat source temperatures of 75–100 °C from non-concentrating solar collector and air temperatures of 20–40 °C were considered. Both air-conditioning condition with evaporation temperature of 5 °C and sub-zero condition with −10 °C were discussed. It is found that mass-coupled semi-GAX absorption cycle with ammonia-water is suitable for air-conditioning with higher heat source temperatures, mass-coupled double lift absorption cycle with water-LiBr is suitable for air-conditioning with lower heat source temperature and mass-coupled double lift absorption cycle with ammonia-water is suitable for sub-zero conditions.



中文翻译:

高效空冷太阳能制冷吸收式制冷循环的比较

吸收式冷却器由于具有利用低品位热能(包括太阳能和余热)的能力而被广泛使用。但是,大多数太阳能吸收式冷却系统都需要冷却塔以将热量散发到周围环境中。冷却塔的使用增加了初始投资和用水量,这可以通过风冷的太阳能吸收式冷却系统来改善。在本文中,为了在不同条件下提供最佳的吸收循环选项,比较了五个适用于风冷太阳能冷却的吸收式制冷循环,包括三个双提升吸收式循环和两个半GAX(发电机-吸收器热交换)吸收循环。进行稳态仿真。在空冷太阳能冷却的情况下,使用LiBr-水和水-氨工作对计算出这些循环的效率。非集中式太阳能集热器的热源温度为75–100°C,空气温度为20–40°C。讨论了蒸发温度为5°C的空调条件和-10°C以下的零温度条件。研究发现,氨水质联半GAX吸收循环适用于热源温度较高的空调,水-溴化锂质联双升程吸收循环适用于热源温度较低的空调氨水与质量耦合的双提升吸收循环适用于零度以下的条件。非集中式太阳能集热器的热源温度为75–100°C,空气温度为20–40°C。讨论了蒸发温度为5°C的空调条件和-10°C以下的零温度条件。研究发现,氨水质联半GAX吸收循环适用于热源温度较高的空调,水-溴化锂质联双升程吸收循环适用于热源温度较低的空调氨水与质量耦合的双提升吸收循环适用于零度以下的条件。非集中式太阳能集热器的热源温度为75–100°C,空气温度为20–40°C。讨论了蒸发温度为5°C的空调条件和-10°C以下的零温度条件。研究发现,氨水质联半GAX吸收循环适用于热源温度较高的空调,水-溴化锂质联双升程吸收循环适用于热源温度较低的空调氨水与质量耦合的双提升吸收循环适用于零度以下的条件。

更新日期:2018-04-08
down
wechat
bug