当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure Regulation of ZnS@g-C3N4/TiO2 Nanospheres for Efficient Photocatalytic H2 Production under Visible-Light Irradiation
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2018-04-07
Chao Zhang, Yuming Zhou, Jiehua Bao, Jiasheng Fang, Shuo Zhao, Yiwei Zhang, Xiaoli Sheng, Wenxia Chen

High-quality mesoporous or hollow ZnS@g-C3N4/TiO2 nanospheres were fabricated successfully via structure regulation strategy for efficient photocatalytic H2 production under visible-light irradiation. The entire process was started with the construction of solid ZnS@g-C3N4/TiO2 (S-ZnS@g-C3N4/TiO2) nanospheres. Then, via TiO2 nanosheets (NSs) in situ growth or Ostwald ripening treatment, S-ZnS@g-C3N4/TiO2 could be converted into mesoporous or hollow ZnS@g-C3N4/TiO2 nanospheres automatically. The obtained porous ZnS@g-C3N4/TiO2 nanospheres were featured of regular shape, high porosity, large specific surface area and adjustable g-C3N4 content. In mesoporous ZnS@g-C3N4/TiO2 (M-ZnS-g-C3N4/TiO2) nanospheres, the specially constructed mesoporous served as channels for the access of reactants in heterogeneous catalysis. Besides, the electron-sink function of ZnS NPs and C–SOx–C sulfone bridges between ZnS and g-C3N4 could improve visible-light H2 production of M-ZnS-g-C3N4/TiO2 significantly. Additionally, the prepared hollow ZnS@g-C3N4/TiO2 (H-ZnS@g-C3N4/TiO2) nanospheres showed a lower photocatalytic H2 production than M-ZnS-g-C3N4/TiO2 due to the decreased specific surface area. Compared with traditional g-C3N4 wrapping method, the proposed structure regulation strategy is simple, effective and structural controllable. Finally, a possible photocatalytic mechanism for visible-light H2 production by porous ZnS@g-C3N4/TiO2 nanospheres was tentatively proposed.



中文翻译:

可见光辐照下高效光催化生产H 2的ZnS @ gC 3 N 4 / TiO 2纳米球的结构调控

通过结构调节策略成功制备了高质量的介孔或中空的ZnS @ gC 3 N 4 / TiO 2纳米球,以在可见光照射下有效地光催化生产H 2。整个过程从构建固态ZnS @ gC 3 N 4 / TiO 2(S-ZnS @ gC 3 N 4 / TiO 2)纳米球开始。然后,通过TiO 2纳米片(NSs)原位生长或Ostwald熟化处理,S-ZnS @ gC 3 N 4 / TiO 2可以自动转化为介孔或中空的ZnS @ gC 3 N 4 / TiO 2纳米球。所得的多孔ZnS @ gC 3 N 4 / TiO 2纳米球具有规则的形状,高孔隙率,大的比表面积和可调节的gC 3 N 4含量。在介孔的ZnS @ gC 3 N 4 / TiO 2(M-ZnS-gC 3 N 4 / TiO 2)纳米球中,特殊构造的介孔充当非均相催化中反应物进入的通道。此外,ZnS NPs和C–SO的电子吸收功能ZnS和gC 3 N 4之间的x –C砜桥可以显着提高M-ZnS-gC 3 N 4 / TiO 2的可见光H 2产生。此外,所制备的中空的ZnS @ GC 3 Ñ 4 /二氧化钛2(H-的ZnS @ GC 3 Ñ 4 /二氧化钛2)纳米球显示出较低的光催化ħ 2生产比M-的ZnS-GC 3 Ñ 4 /二氧化钛2由于比表面积降低。与传统的gC 3 N 4相比包裹法,提出的结构调节策略简单,有效,结构可控。最后,初步提出了多孔ZnS @ gC 3 N 4 / TiO 2纳米球产生可见光H 2的可能的光催化机理。

更新日期:2018-04-07
down
wechat
bug