当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery
Electrochimica Acta ( IF 6.6 ) Pub Date : 2018-04-05
Jingjing Zhou, Yongsheng Guo, Chengdu Liang, Jun Yang, Jiulin Wang, Yanna Nuli

In this work, small sulfur molecules (S2-4) confined in microporous graphitic carbon (MGC) demonstrates excellent performance in Li-S battery with carbonate-based electrolyte. The MGC is synthesized via the simultaneous activation and graphitization of peanut shell char promoted by K2FeO4, which possesses ultra-micropore (pore width <0.7 nm) volume as high as 0.65 cm3 g−1 and the predominant pore width less than 0.4 nm. After sulfur infusion, the S/MGC composite with 50.5 wt% sulfur loading exhibits superior long-term cycling stability and rate performance in S/MGC | Li full cell. The cell delivers high capacity of 1146 mAh g−1 at 0.1 C and 570 mAh g−1 even at 4 C. Moreover, the capacities of 826 and 571 mAh g−1 remain after 1000 cycles at 1 C and 2 C, respectively. In addition, the cell exhibits good storage property. The well confined S2-4 inside the interconnected ultra-micropores with graphitic carbon walls endows the S/MGC composite with good electronic conductivity and stability, while un-occupied pores within the S/MGC facilitate fast Li+ transport and kinetics of electrochemical reactions. This work offers a green and sustainable route to promote the application of Li-S batteries.



中文翻译:

将小硫分子限制在花生壳衍生的微孔石墨碳中,用于高级锂硫电池

在这项工作中,限制在微孔石墨碳(MGC)中的小的硫分子(S 2-4)在具有碳酸盐基电解质的Li-S电池中表现出出色的性能。MGC是通过K 2 FeO 4促进的花生壳炭的同时活化和石墨化合成的,该壳炭具有高达0.65 cm 3  g -1的超微孔(孔宽度<0.7 nm)体积,且主要孔宽度小于1。 0.4纳米 硫注入后,硫含量为50.5 wt%的S / MGC复合材料在S / MGC中表现出优异的长期循环稳定性和速率性能。李满格。该电池在0.1 C和570 mAh g -1时可提供1146 mAh g -1的高容量甚至在4 C时。此外,在1 C和2 C进行1000次循环后,仍保留826和571 mAh g -1的容量。另外,该电池表现出良好的储存性能。互连的超微孔内具有石墨碳壁的良好限制的S 2-4赋予S / MGC复合材料良好的电子导电性和稳定性,而S / MGC中未占据的孔促进了Li +的快速迁移和电化学反应的动力学。这项工作提供了一条绿色且可持续的途径来促进Li-S电池的应用。

更新日期:2018-04-06
down
wechat
bug