当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn–Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage
Nano Letters ( IF 10.8 ) Pub Date : 2018-04-04 00:00:00 , DOI: 10.1021/acs.nanolett.8b00898
Hongxia Shi 1 , Zhiwei Fang 2 , Xiao Zhang 2 , Feng Li 1 , Yawen Tang 1 , Yiming Zhou 1 , Ping Wu 1, 2 , Guihua Yu 2
Affiliation  

Tin-based alloys (Sn–M, M = Fe, Co, Ni, and Cu) have been considered as promising alternatives for graphite anode in advanced Li-ion batteries, but their practical application is hindered by huge volume change-induced poor cycle life. We propose here a facile inorganic–organic double-network nanostructured hydrogel-enabled methodology for uniformly immobilizing ultrafine Sn–M alloys in hierarchical carbon frameworks. The double-network nanostructured gel, consisting of three-dimensional (3D) intertwined cyano-bridged Sn(IV)–Fe(II) inorganic gel and chitosan–glutaraldehyde organic polymer gel, can realize 3D space confinement in molecular scale and thus obtain ultrafine Sn–Fe alloy particles (average size ∼2.7 nm) uniformly embedded in hierarchical 1D to 3D carbon framework. These unique structural features enable the Sn–[email protected] framework electrodes to exhibit long cycle life (516 mA h g–1 after 500 cycles at 0.1 A g–1) and high rate capability (491 and 270 mA h g–1 at 1 and 10 A g–1, respectively). This work provides new insight into controlled synthesis of ultrafine alloys in hierarchical 3D carbon frameworks for improving energy storage properties.

中文翻译:

二维碳骨架中的双网络纳米结构水凝胶衍生的超细锡铁合金,用于增强锂存储

锡基合金(Sn–M,M = Fe,Co,Ni和Cu)被认为是高级锂离子电池中石墨阳极的有前途的替代品,但其巨大的体积变化引起的不良循环阻碍了其实际应用生活。我们在此提出一种简便的无机-有机双网络纳米结构水凝胶使能方法,用于将超细Sn-M合金均匀地固定在分层碳框架中。由三维(3D)交织的氰基桥连的Sn(IV)-Fe(II)无机凝胶和壳聚糖-戊二醛有机聚合物凝胶组成的双网络纳米结构凝胶,可以实现分子规模的3D空间限制,从而获得超细Sn-Fe合金颗粒(平均粒径2.7 nm)均匀地嵌入1D到3D分层碳框架中。-1在0.1 A克500次循环后-1)和高倍率性能(491和270毫安汞柱-1在1和10所述的克-1分别)。这项工作为分层3D碳框架中超细合金的受控合成提供了新的见解,以改善储能性能。
更新日期:2018-04-04
down
wechat
bug