当前位置: X-MOL 学术Micropor. Mesopor. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure reconstruction and impedance spectroscopy study of LiCoO2, LiMn2O4 and LiFePO4 Li-ion battery cathodes
Microporous and Mesoporous Materials ( IF 5.2 ) Pub Date : 2018-04-04 , DOI: 10.1016/j.micromeso.2018.04.001
Bereket Tsegai Habte , Fangming Jiang

Cathode materials have been the focal point of research in the quest for high-performance secondary battery technology in consumer electronics and electric vehicles. The present work investigates the effect of the microstructural morphology of major cathode materials (LiCoO2, LiMn2O4, and LiFePO4) on the performance of the Li-ion battery related to the charge and species transport. Simulated annealing method (SAM) was implemented to generate a virtual 3D domain of the electrode microstructure using a spherical particles, average radius of 3 and 6 μm. An equivalent circuit composed of resistance, capacitance and Warburg impedance was used to model the impedance response of the overall electrochemical reaction occur inside a typical battery system. Electrochemical impedance spectroscopy (EIS) results show that the ionic and electronic mobility in the solid electrode and bulk electrolyte were significantly determined by the morphology of the electrode microstructure. Higher porosity microstructures usually tend to have larger solid-electrolyte interface (SEI) area and lower pore tortuosity which improves the ionic diffusivity in solid and electrolyte phase. Furthermore, the Bruggeman's exponent for effective conductivity and diffusivity was derived from geometrical parameters of the reconstructed microstructure. The real and imaginary parts of the impedance were then presented in Nyquist plot on a frequency range of 20 kHz to 10 mHz.



中文翻译:

LiCoO 2,LiMn 2 O 4和LiFePO 4锂离子电池正极的微观结构重建和阻抗谱研究

阴极材料一直是在消费电子和电动汽车中寻求高性能二次电池技术的研究重点。本工作研究主要阴极材料(LiCoO 2,LiMn 2 O 4和LiFePO 4)的微观结构形态的影响。)锂离子电池的性能与电荷和物质传输有关。实施了模拟退火方法(SAM),以使用球形颗粒(平均半径为3和6μm)生成电极微观结构的虚拟3D域。由电阻,电容和Warburg阻抗组成的等效电路被用来模拟整个电池系统内部发生的整个电化学反应的阻抗响应。电化学阻抗谱(EIS)结果表明,固体电极和本体电解质中的离子迁移率和电子迁移率是由电极微观结构的形态显着确定的。较高孔隙率的微结构通常倾向于具有较大的固体电解质界面(SEI)面积和较低的孔曲折度,从而改善了固相和电解质相中的离子扩散率。此外,有效布鲁格曼指数的有效电导率和扩散率是从重建的微结构的几何参数得出的。阻抗的实部和虚部随后在奈奎斯特图中以20 kHz至10 mHz的频率范围显示。

更新日期:2018-04-04
down
wechat
bug