当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres†
Lab on a Chip ( IF 6.1 ) Pub Date : 2018-04-03 00:00:00 , DOI: 10.1039/c7lc01366c
Jonas Lölsberg 1, 2, 3, 4, 5 , John Linkhorst 2, 3, 4, 5 , Arne Cinar 2, 3, 4, 5 , Alexander Jans 1, 2, 3 , Alexander J. C. Kuehne 1, 2, 3 , Matthias Wessling 1, 2, 3, 4, 5
Affiliation  

Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.

中文翻译:

单微米纤维的湿纺技术展示了快速原型微流体通道内的3D纳米制造

微流体学是一个已建立的多学科研究领域,在医学,生物技术和工程领域具有广泛的应用。微流控芯片的常规生产方法已限于平面结构,从而阻止了将真正的三维体系结构用于诸如多相液滴制备或湿相纤维纺丝的应用。在这里,微流控芯片内部纳米加工的挑战是针对蜘蛛状喷丝头的展示而解决的。多光子光刻技术是一种增材制造方法,用于生产自由形式的微流控母版,随后通过软光刻技术进行复制。将3D蜘蛛启发的喷丝板直接通过芯片内置到最终的微流控设备中多光子光刻。采用这种前所未有的制造策略,可以生产出迄今为止最小的印刷喷丝嘴。该喷丝板紧密密封,将其连接到宏观世界。通过水鞘层诱导的聚丙烯腈凝结过程,将一位数的微米纤维湿纺,证明了其功能性。此处开发的方法论证明了将复杂体系结构连接到经典微流体平台中的制造策略。在芯片内制造中使用多光子光刻技术采用了一种高空间分辨率技术来改善几何形状,从而改善微流控芯片内部的流量控制。展示的制造方法是通用的,将适用于流体控制及其他方面的多种挑战。
更新日期:2018-04-03
down
wechat
bug