当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Regenerating Co–Fe Nanoparticles on Perovskite Oxides as a Hydrocarbon Fuel Oxidation Catalyst in Solid Oxide Fuel Cells
Chemistry of Materials ( IF 8.6 ) Pub Date : 2018-03-29 00:00:00 , DOI: 10.1021/acs.chemmater.7b04569
Ke-Yu Lai 1 , Arumugam Manthiram 1
Affiliation  

Metal nanoparticles exsolved from perovskite oxides have created great interest as anode materials in solid oxide fuel cells (SOFC) due to their high catalytic activity and regenerative capability. However, the self-regeneration process generally occurs at relatively high temperatures (>800 °C), which might limit their practical application. Here, we present a perovskite anode material, La0.3Sr0.7Cr0.3Fe0.6Co0.1O3−δ, which allows Co–Fe nanoparticles exsolved on the oxide surface at intermediate operation temperatures (700 °C). The phase stability of the perovskite oxide and the reversibility of the exsolved alloy were carefully examined by the phase characterization and the nanoparticle morphology observation during the redox process. The electrochemical performance was evaluated by an electrolyte-supported single cell with hydrogen and propane fuels. The Co–Fe nanocatalysts enhance the maximum power density of the La0.3Sr0.7Cr0.3Fe0.6Co0.1O3−δ–Gd0.2Ce0.8O1.9 (GDC) composite anode more than 75% in comparison to that of the cobalt-free La0.3Sr0.7Cr0.3Fe0.7O3−δ–GDC composite anode with hydrogen. The self-regeneratable anode drives off carbon deposition with hydrocarbon fuels and facilitates catalytic reactivation by the redox cycles without requiring a higher-temperature process. Additionally, the dispersed Co–Fe nanoparticles with a random distribution and slow particle growth rate ensure long-term performance. The single-cell SOFC evaluation demonstrates that La0.3Sr0.7Cr0.3Fe0.6Co0.1O3−δ with Co–Fe nanoparticles exhibits acceptable H2S tolerance, excellent redox reversibility, and stable long-term performance for more than 200 h with H2 and over 800 h with propane at 700 °C.

中文翻译:

钙钛矿氧化物上的自生钴铁纳米颗粒作为固体氧化物燃料电池中的烃类燃料氧化催化剂

从钙钛矿氧化物溶解的金属纳米颗粒由于其高催化活性和再生能力而在固体氧化物燃料电池(SOFC)中作为阳极材料引起了极大的兴趣。但是,自再生过程通常发生在相对较高的温度(> 800°C)下,这可能会限制其实际应用。在这里,我们介绍了一种钙钛矿阳极材料,La 0.3 Sr 0.7 Cr 0.3 Fe 0.6 Co 0.1 O3 ,这使Co-Fe纳米颗粒在中间操作温度(700°C)下溶解在氧化物表面上。通过在氧化还原过程中的相表征和纳米颗粒形态观察,仔细检查了钙钛矿氧化物的相稳定性和溶解合金的可逆性。通过具有氢和丙烷燃料的电解质支持的单电池评估电化学性能。Co-Fe纳米催化剂可提高La 0.3 Sr 0.7 Cr 0.3 Fe 0.6 Co 0.1 O3 -δ- Gd 0.2 Ce 0.8 O 1.9的最大功率密度(GDC)复合阳极与含氢的无钴La 0.3 Sr 0.7 Cr 0.3 Fe 0.7 O3 -δ- GDC复合阳极相比,复合阳极大于75%。可自我再生的阳极驱散了碳氢化合物燃料的碳沉积,并通过氧化还原循环促进了催化再活化,而无需进行更高温度的处理。此外,分散的Co-Fe纳米颗粒具有随机分布和缓慢的颗粒生长速率,可确保长期性能。单电池SOFC评估表明La 0.3 Sr 0.7 Cr 0.3 Fe 0.6 Co 0.1 O3 Co-Fe纳米粒子与H2S一起表现出可接受的H 2 S耐受性,优异的氧化还原可逆性以及在700°C的H 2下超过200 h和在丙烷上超过800 h稳定的长期性能。
更新日期:2018-03-29
down
wechat
bug