当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ammonia borane as hydrogen storage materials
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2018-03-21 , DOI: 10.1016/j.ijhydene.2018.02.190
Serdar Akbayrak , Saim Özkar

Ammonia borane is an appropriate solid hydrogen storage material because of its high hydrogen content of 19.6% wt., high stability under ambient conditions, nontoxicity, and high solubility in common solvents. Hydrolysis of ammonia borane appears to be the most efficient way of releasing hydrogen stored in it. Since ammonia borane is relatively stable against hydrolysis in aqueous solution, its hydrolytic dehydrogenation can be achieved at an appreciable rate only in the presence of suitable catalyst at room temperature. Metal(0) nanoparticles have high initial catalytic activity in releasing H2 from ammonia borane. Thermodynamically instable metal(0) nanoparticles can kinetically be stabilized against agglomeration either by using ligands in solution or by supporting on the surface of solid materials with large surface area in solid state. Examples of both type of stabilization are presented from our own studies. The results show that metal(0) nanoparticles dispersed in solution or supported on suitable solid materials with large surface area can catalyze the release of H2 from ammonia borane at room temperature. Dispersion of metal(0) nanoparticles, stabilized in liquid phase by anions or polymers, seems advantageous as providing more active sites compared to the metal nanoparticles supported on a solid surface. However, the supported metal nanoparticles are found to be more stable against agglomeration than the ones dispersed in liquid phase. Therefore, metal nanoparticles supported on solid materials have usually longer lifetime than the ones dispersed in solution. Examples are given from the own literature to show how to improve the catalytic activity and durability of metal nanoparticles by selecting suitable stabilizer or supporting materials for certain metal. For the time being, nanoceria supported rhodium(0) nanoparticles are the most active catalyst providing a turnover frequency of 2010 min−1 in releasing H2 from ammonia borane at room temperature.



中文翻译:

氨硼烷作为储氢材料

氨硼烷是合适的固体氢存储材料,因为其氢含量高,为19.6%wt。,在环境条件下具有高稳定性,无毒,并且在普通溶剂中具有高溶解度。氨硼烷的水解似乎是释放储存在其中的氢的最有效方法。由于氨硼烷对水溶液中的水解是相对稳定的,因此仅在室温下在合适的催化剂存在下,氨硼烷才能以明显的速率实现其水解脱氢。金属(0)纳米粒子在释放H 2方面具有很高的初始催化活性来自氨硼烷。通过在溶液中使用配体或通过以固态固定在具有大表面积的固体材料的表面上,可以使热力学不稳定的metal(0)纳米粒子在动力学上稳定,以防止团聚。我们自己的研究给出了两种类型的稳定化的例子。结果表明,分散在溶液中或负载在具有较大表面积的合适固体材料上的金属(0)纳米颗粒可以催化H 2的释放在室温下从氨硼烷中提取。通过阴离子或聚合物在液相中稳定的金属(0)纳米颗粒的分散,与提供在固体表面的金属纳米颗粒相比,提供了更多的活性位点,似乎是有利的。然而,发现负载的金属纳米颗粒比分散在液相中的金属纳米颗粒对团聚更稳定。因此,负载在固体材料上的金属纳米粒子通常比分散在溶液中的金属纳米粒子具有更长的寿命。从自己的文献中给出了实施例,以显示如何通过为某些金属选择合适的稳定剂或载体材料来改善金属纳米颗粒的催化活性和耐久性。暂时而言,纳米氧化铈负载的铑(0)纳米颗粒是活性最高的催化剂,其周转频率为2010分钟室温下从氨硼烷释放H 2时的-1

更新日期:2018-03-21
down
wechat
bug