当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preparation of nickel coating on ZTA particles by electroless plating
Ceramics International ( IF 5.2 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.ceramint.2018.03.055
Lei Fan , Qiang Wang , Peng Yang , Huahui Chen , Haiping Hong , Wanting Zhang , Jie Ren

Abstract With the aim to effectively improve the interface between ZrO2 toughened Al2O3 (ZTA) particles and metal matrix, nickel was deposited on the surface of ZTA particles by electroless plating method. Formation mechanism of nickel coating and effects of the solution pH, loading capacity of ZTA particles and temperature on the nickel deposition were investigated. Microstructures, thickness and element distributions of nickel coating were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The results showed that the nickel was successfully deposited on the surface of ZTA particles by electroless plating without noticeable defects. The process of electroless nickel plating could be explained by combination of atomic hydrogen and electrochemistry theories. The interfacial nucleation of nickel is easier to form than spontaneous nucleation in the solution. Deposited Nickel has priority on the surface of ZTA particles comparing to that in solution. The optimal conditions to coat nickel on the surface of ZTA particles are: solution pH 4.7–4.8, loading capacity 15–20 g/L, and electroless plating temperature 85 °C. The ZTA particle reinforced iron matrix composites prepared by powder metallurgy could have better interfacial bonding between ZTA particle and iron matrix because of the nickel coating on the surface of ZTA particle. Nickel diffuses into the iron matrix during the sintering preparation of composite materials. The interface between ZTA particle and iron matrix presents the evidence of non-chemical bonding.

中文翻译:

化学镀在 ZTA 颗粒上制备镍涂层

摘要 为有效改善ZrO2增韧Al2O3(ZTA)颗粒与金属基体的界面,采用化学镀法在ZTA颗粒表面沉积镍。研究了镍涂层的形成机理以及溶液pH值、ZTA颗粒的负载能力和温度对镍沉积的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)分析镍镀层的显微组织、厚度和元素分布。结果表明,通过化学镀,镍成功沉积在 ZTA 颗粒表面,无明显缺陷。化学镀镍的过程可以用原子氢理论和电化学理论相结合来解释。镍的界面成核比溶液中的自发成核更容易形成。与溶液中的镍相比,沉积镍优先在 ZTA 颗粒表面。在 ZTA 颗粒表面镀镍的最佳条件是:溶液 pH 值 4.7-4.8,负载量 15-20 g/L,化学镀温度 85 °C。粉末冶金制备的ZTA颗粒增强铁基复合材料由于ZTA颗粒表面有镍涂层,因此ZTA颗粒与铁基体之间具有更好的界面结合。在复合材料的烧结制备过程中,镍扩散到铁基体中。ZTA 颗粒和铁基体之间的界面呈现出非化学键合的证据。与溶液中的镍相比,沉积镍优先在 ZTA 颗粒表面。在 ZTA 颗粒表面镀镍的最佳条件是:溶液 pH 值 4.7-4.8,负载量 15-20 g/L,化学镀温度 85 °C。粉末冶金制备的ZTA颗粒增强铁基复合材料由于ZTA颗粒表面有镍涂层,因此ZTA颗粒与铁基体之间具有更好的界面结合。在复合材料的烧结制备过程中,镍扩散到铁基体中。ZTA 颗粒和铁基体之间的界面呈现出非化学键合的证据。与溶液中的镍相比,沉积镍优先在 ZTA 颗粒表面。在 ZTA 颗粒表面镀镍的最佳条件是:溶液 pH 值 4.7-4.8,负载量 15-20 g/L,化学镀温度 85 °C。粉末冶金制备的ZTA颗粒增强铁基复合材料由于ZTA颗粒表面有镍涂层,因此ZTA颗粒与铁基体之间具有更好的界面结合。在复合材料的烧结制备过程中,镍扩散到铁基体中。ZTA 颗粒和铁基体之间的界面呈现出非化学键合的证据。负载能力 15–20 g/L,化学镀温度 85 °C。粉末冶金制备的ZTA颗粒增强铁基复合材料由于ZTA颗粒表面有镍涂层,因此ZTA颗粒与铁基体之间具有更好的界面结合。在复合材料的烧结制备过程中,镍扩散到铁基体中。ZTA 颗粒和铁基体之间的界面呈现出非化学键合的证据。负载能力 15–20 g/L,化学镀温度 85 °C。粉末冶金制备的ZTA颗粒增强铁基复合材料由于ZTA颗粒表面有镍涂层,因此ZTA颗粒与铁基体之间具有更好的界面结合。在复合材料的烧结制备过程中,镍扩散到铁基体中。ZTA 颗粒和铁基体之间的界面呈现出非化学键合的证据。
更新日期:2018-07-01
down
wechat
bug