当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Doping of large-pore crown graphene nanomesh
Carbon ( IF 10.9 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.carbon.2018.03.048
Mohamed S. Eldeeb , Mohamed M. Fadlallah , Glenn J. Martyna , Ahmed A. Maarouf

Abstract Graphene nanomeshes (GNM's) are garnering increasing interest due to their potential application to important technologies such as photovoltaics, chemical sensing, ion-filtration, and nanoelectronics. Semiconducting GNM's with fractional eV band gaps are good candidates for graphene-based electronics, provided that a mechanism for their stable and controlled doping is developed. Recent work has shown that controlled passivation of the edges of subnanometer pores and subsequent doping give rise to n- and p-doped GNM structures. However, these structures are difficult to fabricate at the nanoscale. Here, we use first principle calculations to study the effect of the pore size on the doping physics of GNM structures with larger pores that can potentially host more than a single dopant. We show that such doping mechanism is effective even for pores with relatively large radii. We also study the effect of the number of dopants per pore on doping stability. We find that stable rigid band n- and p-doping emerges in such structures even if the dopants form a nano-cluster in the pore - rigid band doping is achieved in all cases studied.

中文翻译:

大孔冠石墨烯纳米网的掺杂

摘要 石墨烯纳米网 (GNM) 因其在光伏、化学传感、离子过滤和纳米电子等重要技术中的潜在应用而受到越来越多的关注。具有分数 eV 带隙的半导体 GNM 是基于石墨烯的电子产品的良好候选者,前提是开发了稳定和受控掺杂的机制。最近的工作表明,亚纳米孔边缘的受控钝化和随后的掺杂会产生 n 和 p 掺杂的 GNM 结构。然而,这些结构很难在纳米尺度上制造。在这里,我们使用第一原理计算来研究孔径对具有较大孔径的 GNM 结构的掺杂物理的影响,这些结构可能包含不止一种掺杂剂。我们表明,即使对于半径相对较大的孔,这种掺杂机制也是有效的。我们还研究了每个孔的掺杂剂数量对掺杂稳定性的影响。我们发现,即使掺杂剂在孔中形成纳米簇,稳定的刚性带 n 和 p 掺杂也会出现在这种结构中——在所有研究的情况下都实现了刚性带掺杂。
更新日期:2018-07-01
down
wechat
bug