当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimization of oxygen transport within a tissue engineered vascular graft model using embedded micro-channels inspired by vasa vasorum
Chemical Engineering Science ( IF 4.7 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.ces.2018.02.044
M. Soltani , Mohammad Amin Maleki , Amir Hossein Kaboodrangi , Bobak Mosadegh

Abstract Tissue Engineered Vascular Graft (TEVG) is a promising treatment for cardiovascular diseases because of its potential for repair and long-term patency. However, the quality and preparation time to achieve a mature TEVG has limited its use in clinical settings. Both of these factors can be improved by effectively growing TEVGs with a uniform and high cell density, which is currently limited due to the diffusion limit of oxygen and nutrients. In this paper we propose a novel optimized microchannel geometry in TEVG wall model that facilitates uniform oxygen transport within a simulated TEVG with high cell density. In order to model the oxygen mass transport incompressible Navier-Stokes, convection, and diffusion equations were solved numerically. Furthermore, to model oxygen consumption in the graft domain, Michaelis-Menten kinetics were coupled with the oxygen diffusion equation. Finally, an optimized model was yielded such that nearly four times the cell density can be sustained by using the proposed microchannels design compared to a simulated TEVGs with a solid wall. In addition, to minimize the oxygen gradient along the graft, multiple segments are added to microchannels and their locations along the microchannels are optimized. We believe these simulated results can help guide the design and fabrication of optimized TEVGs.

中文翻译:

使用受血管滋养管启发的嵌入式微通道优化组织工程血管移植模型内的氧气运输

摘要 组织工程血管移植 (TEVG) 是一种很有前途的心血管疾病治疗方法,因为它具有修复潜力和长期通畅性。然而,实现成熟 TEVG 的质量和准备时间限制了其在临床环境中的使用。这两个因素都可以通过有效培养具有均匀和高细胞密度的 TEVG 来改善,目前由于氧气和营养物质的扩散限制,这受到限制。在本文中,我们在 TEVG 壁模型中提出了一种新颖的优化微通道几何形状,以促进具有高细胞密度的模拟 TEVG 内的均匀氧气传输。为了模拟不可压缩的 Navier-Stokes 氧质量传输,对流和扩散方程进行了数值求解。此外,为了模拟接枝域的耗氧量,Michaelis-Menten 动力学与氧扩散方程相结合。最后,产生了一个优化模型,与具有实心壁的模拟 TEVG 相比,使用所提出的微通道设计可以维持近四倍的细胞密度。此外,为了最大限度地减少沿移植物的氧梯度,将多个片段添加到微通道并优化它们沿微通道的位置。我们相信这些模拟结果有助于指导优化 TEVG 的设计和制造。将多个片段添加到微通道,并优化它们沿微通道的位置。我们相信这些模拟结果有助于指导优化 TEVG 的设计和制造。将多个片段添加到微通道,并优化它们沿微通道的位置。我们相信这些模拟结果有助于指导优化 TEVG 的设计和制造。
更新日期:2018-07-01
down
wechat
bug