当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transition metal doped ceria for solar thermochemical fuel production
Solar Energy ( IF 6.7 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.solener.2018.03.022
G.D. Takalkar , R.R. Bhosale , A. Kumar , F. AlMomani , M. Khraisheh , R.A. Shakoor , R.B. Gupta

Abstract In this paper, the effect of doping of transition metal cations on thermal reduction and CO 2 splitting ability of Ce 0.9 M 0.1 O 2−δ materials (where, M = Ni, Zn, Mn, Fe, Cu, Cr, Co, Zr) is investigated by performing multiple thermochemical cycles using a thermogravimetric analyzer. The Ce 0.9 M 0.1 O 2−δ materials are successfully derived via co-precipitation method and analyzed via powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and BET surface area analyzer (BET). The Ce 0.9 M 0.1 O 2−δ materials derived are further tested towards their O 2 releasing and CO production capacity by performing ten thermochemical CO 2 splitting cycles. The obtained TGA results indicate that CeZn and CeFe are capable of releasing higher amounts of O 2 as compared to other Ce 0.9 M 0.1 O 2−δ materials at 1400 °C. Likewise, these two oxides are again observed to be better than other Ce 0.9 M 0.1 O 2−δ materials in terms of their CO production capacity at 1000 °C. For instance, CeZn and CeFe releases an average of 50.5 and 50.0 μmol of O 2 /g·cycle during ten thermochemical cycles in which the thermal reduction step is performed at at 1400 °C. Also, the CO production capacity of CeZn and CeFe material is observed to be equal to 103.3 and 96.3 μmol of CO/g·cycle for ten thermochemical cycles in which the CO 2 splitting is carried out at 1000 °C. The compositional and thermal stability of all Ce 0.9 M 0.1 O 2−δ materials is also analyzed after performing ten thermochemical cycles. The phase composition of all the Ce 0.9 M 0.1 O 2−δ materials remain unchanged after performing ten thermochemical cycles. However, the crystallite size of all the Ce 0.9 M 0.1 O 2−δ materials increases after performing the ten thermochemical cycles due to the high temperature processing.

中文翻译:

用于太阳能热化学燃料生产的过渡金属掺杂氧化铈

摘要 本文研究了过渡金属阳离子的掺杂对Ce 0.9 M 0.1 O 2−δ 材料(其中,M = Ni、Zn、Mn、Fe、Cu、Cr、Co、 Zr) 通过使用热重分析仪进行多次热化学循环来研究。Ce 0.9 M 0.1 O 2-δ 材料通过共沉淀法成功衍生,并通过粉末X射线衍射(PXRD)、扫描电子显微镜(SEM)和BET表面积分析仪(BET)进行分析。通过执行十次热化学CO 2 裂解循环,进一步测试衍生的Ce 0.9 M 0.1 O 2-δ 材料的O 2 释放和CO 生产能力。获得的TGA结果表明,在1400°C下,与其他Ce 0.9 M 0.1 O 2-δ 材料相比,CeZn和CeFe能够释放更高量的O 2 。同样地,再次观察到这两种氧化物在 1000 °C 下的 CO 生产能力方面优于其他 Ce 0.9 M 0.1 O 2-δ 材料。例如,CeZn 和 CeFe 在 10 个热化学循环中平均释放 50.5 和 50.0 μmol O 2 /g·循环,其中热还原步骤在 1400 °C 下进行。此外,观察到 CeZn 和 CeFe 材料的 CO 生产能力等于 103.3 和 96.3 μmol CO/g·循环,在 10 个热化学循环中,其中 CO 2 分裂在 1000 °C 下进行。在执行十次热化学循环后,还分析了所有Ce 0.9 M 0.1 O 2-δ 材料的组成和热稳定性。在进行十次热化学循环后,所有Ce 0.9 M 0.1 O 2-δ 材料的相组成保持不变。然而,所有Ce 0.9 M 0 的微晶尺寸。
更新日期:2018-09-01
down
wechat
bug