当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laminar flame properties of C1-C3 alkanes/hydrogen blends at gas engine conditions
Fuel ( IF 7.4 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.fuel.2018.02.167
Kalyan Kuppa , Andreas Goldmann , Tobias Schöffler , Friedrich Dinkelacker

Abstract The use of fuel blending is encouraged in order to achieve more flexibility in gas engines. In order to design such engines effectively, relevant information about the laminar flame speeds and laminar flame thickness are necessary. Hydrodynamic and thermo-diffusive instabilities at gas engine conditions prevent the acquisition of reliable data experimentally. One-dimensional numerical simulations with detailed chemistry can be a solution. A huge database of laminar flame speeds is generated covering a broad range of gas engine applications, pressure (p) 0.1–20 MPa, fresh gas temperature (Tu) 300–1100 K, air-fuel equivalence ratio ( λ ) 0.9–2.5, methane 100–60 vol%, ethane 0–40 vol%, propane 0–40 vol%, hydrogen 0–30 vol% and exhaust gas recirculation (EGR) 0–30 m%. The detailed reaction mechanisms GRI 3.0 and AramcoMech 1.3 are used for the generation of flame speed data for the mentioned conditions. A laminar flame speed correlation for 100% hydrogen extending up to elevated pressure and temperature conditions is developed. A blending law based on Le Chatelier’s rule is investigated. It is observed that the HC-ratio has a very determining effect for the laminar flame properties of different C1-C3 alkane blends. Based on this observation, it was possible to derive a very efficient correlation for both laminar flame speed and laminar flame thickness for the group of natural gas blends with methane, ethane, propane and hydrogen, and as well as including relevant EGR, which corresponds within 7% accuracy to the calculated database of about 73,000 points. The developed laminar flame speed correlation is incorporated in an engine process simulation code. It is validated with the measured in-cylinder pressure traces from the single cylinder research engine experiments for different gas blends and EGR ratios.

中文翻译:

C1-C3 烷烃/氢混合物在燃气发动机条件下的层流火焰特性

摘要 为了在燃气发动机中实现更大的灵活性,鼓励使用燃料混合。为了有效地设计此类发动机,需要有关层流火焰速度和层流火焰厚度的相关信息。燃气发动机条件下的流体动力学和热扩散不稳定性阻碍了通过实验获得可靠数据。具有详细化学的一维数值模拟可以是一种解决方案。生成了一个巨大的层流火焰速度数据库,涵盖了广泛的燃气发动机应用,压力 (p) 0.1-20 MPa,新鲜气体温度 (Tu) 300-1100 K,空燃当量比 (λ) 0.9-2.5,甲烷 100–60 vol%、乙烷 0–40 vol%、丙烷 0–40 vol%、氢气 0–30 vol% 和废气再循环 (EGR) 0–30 m%。GRI 3.0 和 AramcoMech 1 的详细反应机制。3 用于生成上述条件下的火焰速度数据。开发了 100% 氢气的层流火焰速度相关性,扩展到升高的压力和温度条件。研究了基于 Le Chatelier 规则的混合律。据观察,HC 比对不同 C1-C3 烷烃混合物的层流火焰性质具有非常决定性的影响。基于这一观察,可以推导出非常有效的层流火焰速度和层流火焰厚度与甲烷、乙烷、丙烷和氢气混合物组的层流火焰厚度的相关性,并且包括相关的 EGR,其对应于对约 73,000 点的计算数据库准确度为 7%。开发的层流火焰速度相关性被纳入发动机过程模拟代码。
更新日期:2018-07-01
down
wechat
bug