当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al 2 O 3 composites
Composites Science and Technology ( IF 9.1 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.compscitech.2018.03.009
Yuezhan Feng , Chengen He , Yingfeng Wen , Xingping Zhou , Xiaolin Xie , Yunsheng Ye , Yiu-Wing Mai

Abstract Interfacial tailoring is always the key to preparing high-performance polymer-based thermal conductive composites (PTCs). Herein, we reported a multi-functional interface tailoring approach to simultaneously improve the thermal conductivity, flame retardancy, thermal and mechanical properties of PTCs, by forming a core-shell structured graphene oxide coating Al2O3 hybrid (Al2O3@HGO). Simultaneously a flame retardant bridging agent was introduced to improve the coating amount and flame retardant efficiency of the hybrid. The morphology analysis revealed the significant reinforcement of interfacial interaction of Al2O3 in epoxy (EP) by HGO coating. As a result, such the interfacial tailoring induced both the significant decrease in interfacial thermal resistance and the formation of additional thermal conductive paths by the graphene coating layer, resulting in the significant improvement in thermal conductivity of EP/Al2O3@HGO composites. The flame retardant parameters, peak heat release rate, total heat release and total smoke production, showed a 49.3%, 40.9% and 71.2% reduction, respectively, comparing to neat EP, which was ascribed to the strong interface with GO coating layer and the flame retardant bridging agent catalyzed charring to form an intact and compact char protective layer with Al2O3. Moreover, the strong interfacial interaction also restricted the segment movement, increasing the storage modulus and Tg.

中文翻译:

用于增强环氧树脂/Al 2 O 3 复合材料的导热性、阻燃性和动态力学性能的多功能界面剪裁

摘要 界面裁剪一直是制备高性能聚合物基导热复合材料(PTCs)的关键。在此,我们报道了一种多功能界面剪裁方法,通过形成核壳结构的氧化石墨烯涂层 Al2O3 混合物(Al2O3@HGO),同时提高 PTC 的导热性、阻燃性、热和机械性能。同时引入阻燃架桥剂以提高复合材料的包覆量和阻燃效率。形态分析表明,HGO 涂层显着增强了环氧树脂 (EP) 中 Al2O3 的界面相互作用。因此,这种界面剪裁导致界面热阻的显着降低和石墨烯涂层形成额外的导热路径,从而显着提高了 EP/Al2O3@HGO 复合材料的热导率。与纯 EP 相比,阻燃参数、峰值放热率、总放热量和总发烟量分别降低了 49.3%、40.9% 和 71.2%,这归因于与 GO 涂层的强界面和阻燃架桥剂催化炭化与Al2O3形成完整致密的炭保护层。此外,强界面相互作用也限制了片段运动,增加了储能模量和 Tg。导致 EP/Al2O3@HGO 复合材料的热导率显着提高。与纯 EP 相比,阻燃参数、峰值放热率、总放热量和总发烟量分别降低了 49.3%、40.9% 和 71.2%,这归因于与 GO 涂层的强界面和阻燃架桥剂催化炭化与Al2O3形成完整致密的炭保护层。此外,强界面相互作用也限制了片段运动,增加了储能模量和 Tg。导致 EP/Al2O3@HGO 复合材料的热导率显着提高。与纯 EP 相比,阻燃参数、峰值放热率、总放热量和总发烟量分别降低了 49.3%、40.9% 和 71.2%,这归因于与 GO 涂层的强界面和阻燃架桥剂催化炭化与Al2O3形成完整致密的炭保护层。此外,强界面相互作用也限制了片段运动,增加了储能模量和 Tg。这归因于与 GO 涂层的强界面和阻燃架桥剂催化炭化与 Al2O3 形成完整且致密的炭保护层。此外,强界面相互作用也限制了片段运动,增加了储能模量和 Tg。这归因于与 GO 涂层的强界面和阻燃架桥剂催化炭化与 Al2O3 形成完整且致密的炭保护层。此外,强界面相互作用也限制了片段运动,增加了储能模量和 Tg。
更新日期:2018-05-01
down
wechat
bug