当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm
Environmental Science & Technology ( IF 11.4 ) Pub Date : 2018-03-20 00:00:00 , DOI: 10.1021/acs.est.7b05046
Jing-Huan Luo 1 , Hui Chen 1 , Shihu Hu 1 , Chen Cai 1 , Zhiguo Yuan 1 , Jianhua Guo 1
Affiliation  

Anaerobic oxidation of methane (AOM) plays a crucial role in controlling the flux of methane from anoxic environments. Sulfate-, nitrite-, nitrate-, and iron-dependent methane oxidation processes have been considered to be responsible for the AOM activities in anoxic niches. We report that nitrate-reducing AOM microorganisms, enriched in a membrane biofilm bioreactor, are able to couple selenate reduction to AOM. According to ion chromatography, X-ray photoelectron spectroscopy, and long-term bioreactor performance, we reveal that soluble selenate was reduced to nanoparticle elemental selenium. High-throughput 16S rRNA gene sequencing indicates that Candidatus Methanoperedens and Candidatus Methylomirabilis remained the only known methane-oxidizing microorganisms after nitrate was switched to selenate, suggesting that these organisms could couple anaerobic methane oxidation to selenate reduction. Our findings suggest a possible link between the biogeochemical selenium and methane cycles.

中文翻译:

脱氮厌氧甲烷氧化生物膜驱动的微生物硒酸盐还原

甲烷的厌氧氧化(AOM)在控制来自缺氧环境的甲烷流量方面起着至关重要的作用。硫酸盐,亚硝酸盐,硝酸盐和铁依赖的甲烷氧化过程被认为是缺氧环境中AOM活性的原因。我们报告说,减少硝酸盐的AOM微生物,在膜生物膜生物反应器中富集,能够将硒酸盐还原耦合到AOM。根据离子色谱,X射线光电子能谱和长期的生物反应器性能,我们发现可溶性硒酸盐被还原为纳米元素硒。高通量16S rRNA基因测序表明,暂定Methanoperedens和暂定硝酸盐转换为硒酸盐后,甲烷rabi菌仍然是唯一已知的甲烷氧化微生物,这表明这些生物体可以将厌氧甲烷氧化与硒酸盐还原反应耦合。我们的发现表明,生物地球化学硒与甲烷循环之间可能存在联系。
更新日期:2018-03-20
down
wechat
bug