当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Organic-based magnon spintronics
Nature Materials ( IF 41.2 ) Pub Date : 2018-03-12 , DOI: 10.1038/s41563-018-0035-3
Haoliang Liu , Chuang Zhang , Hans Malissa , Matthew Groesbeck , Marzieh Kavand , Ryan McLaughlin , Shirin Jamali , Jingjun Hao , Dali Sun , Royce A. Davidson , Leonard Wojcik , Joel S. Miller , Christoph Boehme , Z. Valy Vardeny

Magnonics concepts utilize spin-wave quanta (magnons) for information transmission, processing and storage. To convert information carried by magnons into an electric signal promises compatibility of magnonic devices with conventional electronic devices, that is, magnon spintronics1. Magnons in inorganic materials have been studied widely with respect to their generation2,3, transport4,5 and detection6. In contrast, resonant spin waves in the room-temperature organic-based ferrimagnet vanadium tetracyanoethylene (V(TCNE) x (x 2)), were detected only recently7. Herein we report room-temperature coherent magnon generation, transport and detection in films and devices based on V(TCNE) x using three different techniques, which include broadband ferromagnetic resonance (FMR), Brillouin light scattering (BLS) and spin pumping into a Pt adjacent layer. V(TCNE) x can be grown as neat films on a large variety of substrates, and it exhibits extremely low Gilbert damping comparable to that in yttrium iron garnet. Our studies establish an alternative use for organic-based magnets, which, because of their synthetic versatility, may substantially enrich the field of magnon spintronics.



中文翻译:

有机基磁振子自旋电子学

磁振学概念利用自旋波量子(磁振子)进行信息传输,处理和存储。将由磁振子携带的信息转换为电信号,保证了磁强子器件与常规电子设备(即,磁振子自旋电子器件1)的兼容性。无机材料中的磁振子已被广泛研究,涉及其生成2,3,传输4,5和检测6。与此相反,谐振自旋波在室温下为基于有机亚铁磁钒四氰乙烯(V TCNE()XX  2))时,仅检出最近7 。本文中,我们使用三种不同的技术,包括宽带铁磁共振(FMR),布里渊光散射(BLS)和自旋泵浦到Pt中,报告了基于V(TCNE)x的胶片和设备中室温相干磁振子的产生,传输和检测相邻层。V(TCNE)x可以在各种各样的基底上以纯净的薄膜形式生长,并且表现出与钇铁石榴石相当低的吉尔伯特阻尼。我们的研究建立了有机基磁体的替代用途,由于其合成的多功能性,可以大大丰富磁控自旋电子学的领域。

更新日期:2018-03-13
down
wechat
bug