当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stable High‐Performance Perovskite Solar Cells via Grain Boundary Passivation
Advanced Materials ( IF 29.4 ) Pub Date : 2018-03-12 , DOI: 10.1002/adma.201706576
Tianqi Niu 1 , Jing Lu 1 , Rahim Munir 2 , Jianbo Li 1 , Dounya Barrit 2 , Xu Zhang 3 , Hanlin Hu 2 , Zhou Yang 1 , Aram Amassian 2 , Kui Zhao 1 , Shengzhong Frank Liu 1, 3
Affiliation  

The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high‐performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron‐based grazing‐incidence X‐ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb–I antisite defects and vacancies created by under‐coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

中文翻译:

通过晶界钝化稳定的高性能钙钛矿太阳能电池

多晶钙钛矿薄膜内晶界(GBs)的陷阱态会降低其光电性能,因此GB工程对于稳定高性能的光电器件尤为重要。结果表明,具有路易斯酸或碱官能团的半导体分子可以有效地钝化体膜中的陷阱态。使用基于同步加速器的掠入射X射线散射技术研究钙钛矿的结晶动力学,以探讨成膜机理。提出了一种钝化机制的模型,以了解分子如何同时钝化由配位不足的Pb原子产生的Pb-I反位缺陷和空位。此外,它还解释了半导体分子和钙钛矿之间的能量偏移如何影响陷阱态和晶粒间载流子传输。通过优化分子钝化处理可获得优异的光电性能。这些好处转化为功率转换效率显着提高到19.3%,以及改善了太阳能电池的环境和热稳定性。在室温下在50%相对湿度下暴露40 d后,没有封装的钝化器件仅降解≈13%,而在受控环境中于80°C放置24 h则仅降解≈10%。这些好处转化为功率转换效率显着提高到19.3%,以及改善了太阳能电池的环境和热稳定性。在室温下在50%相对湿度下暴露40 d后,没有封装的钝化器件仅降解≈13%,而在受控环境中于80°C放置24 h则仅降解≈10%。这些好处转化为功率转换效率显着提高到19.3%,以及改善了太阳能电池的环境和热稳定性。在室温下在50%相对湿度下暴露40 d后,没有封装的钝化器件仅降解≈13%,而在受控环境中于80°C放置24 h则仅降解≈10%。
更新日期:2018-03-12
down
wechat
bug