当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Self‐Doping Controls Luminescence of Pure Organic Single Crystals
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2018-03-12 , DOI: 10.1002/adfm.201800116
Olga D. Parashchuk 1 , Artur A. Mannanov 1, 2 , Vladislav G. Konstantinov 1 , Dmitry I. Dominskiy 1 , Nikolay M. Surin 3 , Oleg V. Borshchev 3 , Sergei A. Ponomarenko 3, 4 , Maxim S. Pshenichnikov 2 , Dmitry Yu. Paraschuk 1
Affiliation  

Organic optoelectronics calls for materials combining bright luminescence and efficient charge transport. The former is readily achieved in isolated molecules, while the latter requires strong molecular aggregation, which usually quenches luminescence. This hurdle is generally resolved by doping the host material with highly luminescent molecules collecting the excitation energy from the host. Here, a novel concept of molecular self‐doping is introduced in which a higher luminescent dopant emerges as a minute‐amount byproduct during the host material synthesis. As a one‐stage process, self‐doping is more advantageous than widely used external doping. The concept is proved on thiophene–phenylene cooligomers (TPCO) consisting of four (host) and six (dopant) conjugated rings. It is shown that <1% self‐doping doubles the photoluminescence in the TPCO single crystals, while not affecting much their charge transport properties. The Monte‐Carlo modeling of photoluminescence dynamics reveals that host–dopant energy transfer is controlled by both excitonic transport in the host and host–dopant Förster resonant energy transfer. The self‐doping concept is further broadened to a variety of conjugated oligomers synthesized via Suzuki, Kumada, and Stille crosscoupling reactions. It is concluded that self‐doping combined with improved excitonic transport and host–dopant energy transfer is a promising route to highly luminescent semiconducting organic single crystals for optoelectronics.

中文翻译:

分子自掺杂控制纯有机单晶的发光

有机光电子要求将明亮的发光和有效的电荷传输结合在一起的材料。前者很容易在分离的分子中实现,而后者则需要强大的分子聚集,这通常会终止发光。通常通过用高发光分子掺杂基质材料来解决该障碍,所述高发光分子收集来自基质的激发能。在这里,引入了分子自掺杂的新概念,其中在主体材料合成过程中,微量的副产物出现了较高发光的掺杂剂。作为一个阶段的过程,自掺杂比广泛使用的外部掺杂更具优势。该概念在由四个(主体)和六个(掺杂剂)共轭环组成的噻吩-亚苯基低聚物(TPCO)上得到了证明。显示< 1%的自掺杂可使TPCO单晶的光致发光倍增,同时不会对其电荷传输特性产生太大影响。蒙特卡洛的光致发光动力学模型表明,主体-掺杂剂的能量传递受主体中激子传输和主体-掺杂剂的Förster共振能量传递的控制。自掺杂概念进一步扩展到通过铃木,熊田和斯蒂勒交叉偶联反应合成的各种共轭低聚物。结论是,自掺杂结合改进的激子传输和主体-掺杂剂能量转移是向光电子学中高发光的半导体有机单晶发展的有希望的途径。蒙特卡洛的光致发光动力学模型表明,主体-掺杂剂的能量传递受主体中激子传输和主体-掺杂剂的Förster共振能量传递的控制。自掺杂概念进一步扩展到通过铃木,熊田和斯蒂勒交叉偶联反应合成的各种共轭低聚物。结论是,自掺杂结合改进的激子传输和主体-掺杂剂能量转移是向光电子学中高发光的半导体有机单晶发展的有希望的途径。蒙特卡洛的光致发光动力学模型表明,主体-掺杂剂的能量传递受主体中激子传输和主体-掺杂剂的Förster共振能量传递的控制。自掺杂概念进一步扩展到通过铃木,熊田和斯蒂勒交叉偶联反应合成的各种共轭低聚物。结论是,自掺杂结合改进的激子传输和主体-掺杂剂能量转移是向光电子学中高发光的半导体有机单晶发展的有希望的途径。
更新日期:2018-03-12
down
wechat
bug