当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective
Chemical Science ( IF 8.4 ) Pub Date : 2018-03-07 00:00:00 , DOI: 10.1039/c7sc05464e
Luis Escalera-Moreno 1 , José J Baldoví 2 , Alejandro Gaita-Ariño 1 , Eugenio Coronado 1
Affiliation  

Very recently the closely related fields of molecular spin qubits, single ion magnets and single atom magnets have been shaken by unexpected results. We have witnessed a jump in the phase memory times of spin qubits from a few microseconds to almost a millisecond in a vanadium complex, magnetic hysteresis up to 60 K in a dysprosium-based magnetic molecule and magnetic memory up to 30 K in a holmium atom deposited on a surface. With single-molecule magnets being more than two decades old, this rapid improvement in the physical properties is surprising and its explanation deserves urgent attention. The general assumption of focusing uniquely on the energy barrier is clearly insufficient to model magnetic relaxation. Other factors, such as vibrations that couple to spin states, need to be taken into account. In fact, this coupling is currently recognised to be the key factor that accounts for the slow relaxation of magnetisation at higher temperatures. Herein we will present a critical perspective of the recent advances in molecular nanomagnetism towards the goal of integrating spin–phonon interactions into the current computational methodologies of spin relaxation. This presentation will be placed in the context of the well-known models developed in solid state physics, which, as we will explain, are severely limited for molecular systems.

中文翻译:

分子纳米磁体和自旋量子位中的自旋态、振动和自旋弛豫:批判性观点

最近,与分子自旋量子位、单离子磁体和单原子磁体密切相关的领域因出人意料的结果而动摇。我们见证了自旋量子比特的相位记忆时间在钒络合物中从几微秒到几乎一毫秒的跳跃,在基于镝的磁性分子中高达 60 K 的磁滞和在钬原子中高达 30 K 的磁记忆沉积在表面上。由于单分子磁体已有二十多年的历史,物理性质的这种快速改善令人惊讶,其解释值得迫切关注。仅关注能垒的一般假设显然不足以模拟磁弛豫。需要考虑其他因素,例如耦合到自旋状态的振动。实际上,这种耦合目前被认为是导致在较高温度下磁化强度缓慢弛豫的关键因素。在这里,我们将对分子纳米磁性的最新进展提出批判性观点,以实现将自旋-声子相互作用整合到当前的自旋弛豫计算方法中的目标。本演讲将放在固态物理学中开发的著名模型的背景下,正如我们将解释的那样,这些模型对于分子系统来说是非常有限的。
更新日期:2018-03-07
down
wechat
bug