当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insights into the Na+ Storage Mechanism of Phosphorus‐Functionalized Hard Carbon as Ultrahigh Capacity Anodes
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2018-03-06 , DOI: 10.1002/aenm.201702781
Yu Li 1 , Yifei Yuan 2 , Ying Bai 1 , Yuanchang Liu 1 , Zhaohua Wang 1 , Limin Li 1 , Feng Wu 1, 3 , Khalil Amine 2 , Chuan Wu 1, 3 , Jun Lu 2
Affiliation  

Hard carbon as a typical anode material for sodium ion batteries has received much attention in terms of its low cost and renewability. Herein, phosphorus‐functionalized hard carbon with a specific “honeycomb briquette” shaped morphology is synthesized via electrospinning technology. When applied as an anode material for Na+ storage, it exhibits an impressively high reversible capacity of 393.4 mA h g−1 with the capacity retention up to 98.2% after 100 cycles. According to first‐principle calculation, the ultrahigh capacity of the as‐prepared anode is ascribed to the enhancement of Na‐absorption through formation of PO and PC bonds in graphitic layers when doped with phosphorus. Moreover, the increase of electron density around the Fermi level is found to be mainly caused by O atoms instead of P atoms.

中文翻译:

深入了解磷功能化硬碳作为超高容量阳极的Na +储存机理

就其低成本和可再生性而言,作为钠离子电池典型阳极材料的硬碳已受到广泛关注。在此,通过静电纺丝技术合成了具有特定“蜂窝煤块”形形态的磷官能化硬碳。当用作Na +储存的阳极材料时,它表现出令人印象深刻的393.4 mA hg -1的高可逆容量,在100次循环后容量保持率高达98.2%。根据第一原理计算,所制备的阳极的超高容量是通过形成PO和P的归因于钠吸收的增强掺杂磷时,石墨层中的C键。此外,发现费米能级附近的电子密度增加主要是由O原子而不是P原子引起的。
更新日期:2018-03-06
down
wechat
bug