当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trifunctional [email protected] Catalyst for Enhanced Stable Simultaneously Catalytic Removal of Formaldehyde and Ozone
ACS Catalysis ( IF 12.9 ) Pub Date : 2018-03-05 00:00:00 , DOI: 10.1021/acscatal.8b00309
Hongchao Wang 1 , Zhengwen Huang 1 , Zhi Jiang 1 , Zheng Jiang 2 , Yi Zhang 1 , Zhixiang Zhang 1 , Wenfeng Shangguan 1
Affiliation  

The key challenge for controlling low concentration volatile organic compounds (VOCs) is to develop technology capable of operating under mild conditions in a cost-effective manner. Meanwhile, ozone (O3) is another dangerous air pollutant and byproducts of many emerging air quality control technologies, such as plasma and electrostatic precipitators. To address these multiple challenges, we report here a design strategy capable of achieving the following trifunctions (i.e., efficiently VOCs adsorption enrichment, ozone destruction, and stable VOCs degradation) from the synergistic effect of adsorption center encapsulation and catalytic active sites optimization using 2D manganese(II) monoxide nanosheets decorated carbon spheres with hierarchical core–shell structure. Carbonous residues in the as-synthesized MnOx matrices played a key role for in situ generating homogeneous dispersed unsaturated MnO during the annealing of the as-synthesized [email protected]x in the flow of argon under a proper calcination temperature (550 °C). The formation of the intimacy interface between MnO and carbon not only facilitates the adsorption and subsequent catalytic reaction but also results in a gatekeeper effect on the protection of the carbon sphere against the etching of O3. Such a composite architecture achieved the highest stable removal efficiency (100% for 60 ppm of formaldehyde and 180 ppm of O3 simultaneously) and 100% CO2 selectivity under a GHSV of 60000 mL h–1 g–1. These findings thus open up a way to address current multiple challenges in air quality control using a single hierarchical core–shell structure.

中文翻译:

三功能[电子邮件保护]催化剂,用于同时稳定地催化去除甲醛和臭氧

控制低浓度挥发性有机化合物(VOC)的关键挑战是开发能够在温和条件下以经济有效的方式运行的技术。同时,臭氧(O 3)是另一种危险的空气污染物,是许多新兴的空气质量控制技术(例如等离子和静电除尘器)的副产品。为了解决这些多重挑战,我们在这里报告一种设计策略,该策略能够通过利用2D锰吸附中心包封和催化活性位点优化的协同效应,实现以下三功能(即,有效的VOC吸附富集,臭氧破坏和稳定的VOCs降解) (II)一氧化碳纳米片装饰了具有分级核-壳结构的碳球。合成后的MnO x基质中的碳残留物在合成后的[受电子邮件保护] x的退火过程中,就地生成均匀分散的不饱和MnO起着关键作用。在适当的煅烧温度(550°C)下在氩气流中流动。MnO和碳之间亲密界面的形成不仅有利于吸附和随后的催化反应,而且还起到了保护碳球免受O 3腐蚀的守门作用。这种复合结构在60000 mL h –1 g –1的GHSV下实现了最高的稳定去除效率(对于60 ppm的甲醛为100%,同时对180 ppm的O 3而言)和100%的CO 2选择性。因此,这些发现开辟了一种使用单一的层级核-壳结构来解决当前空气质量控制方面的多重挑战的方法。
更新日期:2018-03-05
down
wechat
bug