当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modular assembly of the nucleolar pre-60S ribosomal subunit
Nature ( IF 64.8 ) Pub Date : 2018-03-05 , DOI: 10.1038/nature26156
Zahra Assur Sanghai , Linamarie Miller , Kelly R. Molloy , Jonas Barandun , Mirjam Hunziker , Malik Chaker-Margot , Junjie Wang , Brian T. Chait , Sebastian Klinge

Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.

中文翻译:

核仁前 60S 核糖体亚基的模块化组装

真核生物核糖体组装期间的早期共转录事件导致小 (40S) 和大 (60S) 核糖体亚基的前体形成。许多瞬时组装因子调节和陪伴前核糖体 RNA 亚域的系统折叠。然而,由于缺乏结构信息,这些因素在早期核仁 60S 组装过程中的作用尚不完全清楚。在这里,我们报告了不同构象状态下核仁前 60S 核糖体亚基的冷冻电子显微镜 (cryo-EM) 重建,分辨率高达 3.4 Å。这些重建揭示了如何使用空间位阻和分子模拟来防止过早折叠状态和后期因子的结合。这是通过 21 种核糖体组装因子的协同活动实现的,这些因子稳定​​和重塑前核糖体 RNA 和核糖体蛋白。在这些因素中,三个 Brix 域蛋白及其结合伙伴在核糖体 RNA (rRNA) 域边界形成环状结构,以支持成熟颗粒的结构。这些前 60S 颗粒相互排斥的构象的存在表明,在核糖体组装的后续阶段,多肽出口隧道的形成是通过不同的折叠途径实现的。这些结构使先前的遗传和生化数据合理化,并突出了以单向方式驱动真核核糖体组装的机制。三个 Brix 结构域蛋白及其结合伙伴在核糖体 RNA (rRNA) 结构域边界形成环状结构,以支持成熟颗粒的结构。这些前 60S 颗粒相互排斥的构象的存在表明,在核糖体组装的后续阶段,多肽出口隧道的形成是通过不同的折叠途径实现的。这些结构使先前的遗传和生化数据合理化,并突出了以单向方式驱动真核核糖体组装的机制。三个 Brix 结构域蛋白及其结合伙伴在核糖体 RNA (rRNA) 结构域边界形成环状结构,以支持成熟颗粒的结构。这些前 60S 颗粒相互排斥的构象的存在表明,在核糖体组装的后续阶段,多肽出口隧道的形成是通过不同的折叠途径实现的。这些结构使先前的遗传和生化数据合理化,并突出了以单向方式驱动真核核糖体组装的机制。这些前 60S 颗粒相互排斥的构象的存在表明,在核糖体组装的后续阶段,多肽出口隧道的形成是通过不同的折叠途径实现的。这些结构使先前的遗传和生化数据合理化,并突出了以单向方式驱动真核核糖体组装的机制。这些前 60S 颗粒相互排斥的构象的存在表明,在核糖体组装的后续阶段,多肽出口隧道的形成是通过不同的折叠途径实现的。这些结构使先前的遗传和生化数据合理化,并突出了以单向方式驱动真核核糖体组装的机制。
更新日期:2018-03-05
down
wechat
bug