当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Layered Insulator/Molecule/Metal Heterostructures with Molecular Functionality through Porphyrin Intercalation
ACS Nano ( IF 17.1 ) Pub Date : 2018-03-02 00:00:00 , DOI: 10.1021/acsnano.7b08887
Jacob Ducke 1 , Alexander Riss 1 , Alejandro Pérez Paz 2, 3 , Knud Seufert 1 , Martin Schwarz 1 , Manuela Garnica 1 , Angel Rubio 2, 4, 5 , Willi Auwärter 1
Affiliation  

Intercalation of molecules into layered materials is actively researched in materials science, chemistry, and nanotechnology, holding promise for the synthesis of van der Waals heterostructures and encapsulated nanoreactors. However, the intercalation of organic molecules that exhibit physical or chemical functionality remains a key challenge to date. In this work, we present the synthesis of heterostructures consisting of porphines sandwiched between a Cu(111) substrate and an insulating hexagonal boron nitride (h-BN) monolayer. We investigated the energetics of the intercalation, as well as the influence of the capping h-BN layer on the behavior of the intercalated molecules using scanning probe microscopy and density functional theory calculations. While the self-assembly of the molecules is altered upon intercalation, we show that the intrinsic functionalities, such as switching between different porphine tautomers, are preserved. Such insulator/molecule/metal structures provide opportunities to protect organic materials from deleterious effects of atmospheric environment, can be used to control chemical reactions through spatial confinement, and give access to layered materials based on the ample availability of synthesis protocols provided by organic chemistry.

中文翻译:

通过卟啉插层具有分子功能的层状绝缘子/分子/金属异质结构

材料科学,化学和纳米技术中正在积极研究将分子插入层状材料中,为合成范德华异质结构和包封的纳米反应器提供了希望。然而,迄今为止,展现出物理或化学功能的有机分子的插入仍然是关键的挑战。在这项工作中,我们介绍了由卟啉夹在Cu(111)衬底和绝缘的六方氮化硼(h -BN)单层之间的异质结构的合成。我们研究了插层的能量学以及上限h的影响-BN层对插入分子的行为采用扫描探针显微镜和密度泛函理论计算。虽然插入时会改变分子的自组装,但我们表明保留了内在功能,例如在不同的卟啉互变异构体之间切换。此类绝缘体/分子/金属结构提供了保护有机材料免受大气环境有害影响的机会,可用于通过空间限制来控制化学反应,并基于有机化学提供的合成规程的充分可用性来访问层状材料。
更新日期:2018-03-02
down
wechat
bug