当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Incorporation of Nanoalumina Improves Mechanical Properties and Osteogenesis of Hydroxyapatite Bioceramics
ACS Biomaterials Science & Engineering ( IF 5.8 ) Pub Date : 2018-03-05 00:00:00 , DOI: 10.1021/acsbiomaterials.7b00754
Hossein Tavassoli 1, 2, 3 , Jafar Javadpour 1 , Mahdiar Taheri 1, 4 , Morteza Mehrjou , Newsha Koushki 5 , Farzin Arianpour 1, 6 , Mohammad Majidi , Jalal Izadi-Mobarakeh , Babak Negahdari 7 , Peggy Chan 2 , Majid Ebrahimi Warkiani 8 , Shahin Bonakdar
Affiliation  

A handful of work focused on improving the intrinsic low mechanical properties of hydroxyapatite (HA) by various reinforcing agents. However, the big challenge regarding improving mechanical properties is maintaining bioactivity. To address this issue, we report fabrication of apatite-based composites by incorporation of alumina nanoparticles (n-Al2O3). Although numerous studies have used micron or submicron alumina for reinforcing hydroxyapatite, only few reports are available about the use of n-Al2O3. In this study, spark plasma sintering (SPS) method was utilized to develop HA-nAl2O3 dense bodies. Compared to the conventional sintering, decomposition of HA and formation of calcium aluminates phases are restricted using SPS. Moreover, n-Al2O3 acts as a bioactive agent while its conventional form is an inert bioceramics. The addition of n-Al2O3 resulted in 40% improvement in hardness along with a 110% increase in fracture toughness, while attaining nearly full dense bodies. The in vitro characterization of nanocomposite demonstrated improved bone-specific cell function markers as evidenced by cell attachment and proliferation, alkaline phosphatase activity, calcium and collagen detection and nitric oxide production. Specifically, gene expression analysis demonstrated that introduction of n-Al2O3 in HA matrix resulted in accelerated osteogenic differentiation of osteoblast and mesenchymal stem cells, as expression of Runx-2 and OSP showed 2.5 and 19.6 fold increase after 2 weeks (p < 0.05). Moreover, protein adsorption analysis showed enhanced adsorption of plasma proteins to HA-nAl2O3 sample compared to HA. These findings suggest that HA-nAl2O3 could be a prospective candidate for orthopedic applications due to its improved mechanical and osteogenic properties.

中文翻译:

纳米氧化铝的加入改善了羟基磷灰石生物陶瓷的机械性能和成骨性

少数工作致力于通过各种增强剂改善羟基磷灰石(HA)的固有低机械性能。然而,关于改善机械性能的最大挑战是保持生物活性。为了解决这个问题,我们报告了通过掺入氧化铝纳米颗粒(n-Al 2 O 3)制造磷灰石基复合材料的过程。尽管许多研究已经使用微米或亚微米氧化铝来增强羟基磷灰石,但是关于n-Al 2 O 3的使用的报道很少。在这项研究中,利用火花等离子体烧结(SPS)方法开发了HA-nAl 2 O 3。密集的身体。与常规烧结相比,使用SPS限制了HA的分解和铝酸钙相的形成。此外,n-Al 2 O 3充当生物活性剂,而其常规形式是惰性生物陶瓷。添加n-Al 2 O 3可使硬度提高40%,同时使断裂韧性提高110%,同时获得几乎完全的致密体。纳米复合材料的体外表征显示出改善的骨特异性细胞功能标记,如细胞附着和增殖,碱性磷酸酶活性,钙和胶原蛋白检测以及一氧化氮生成所证明。具体而言,基因表达分析表明引入了n-Al 2HA基质中的O 3导致成骨细胞和间充质干细胞的成骨分化加速,因为Runx-2和OSP的表达在2周后分别增加了2.5倍和19.6倍(p <0.05)。此外,蛋白质吸附分析表明与HA相比,血浆蛋白对HA-nAl 2 O 3样品的吸附增强。这些发现表明,由于HA-nAl 2 O 3改善了机械和成骨特性,因此有望成为骨科应用的候选材料。
更新日期:2018-03-05
down
wechat
bug