当前位置: X-MOL 学术WIREs Comput. Mol. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum‐mechanical condensed matter simulations with CRYSTAL
Wiley Interdisciplinary Reviews: Computational Molecular Science ( IF 11.4 ) Pub Date : 2018-03-04 , DOI: 10.1002/wcms.1360
Roberto Dovesi 1 , Alessandro Erba 1 , Roberto Orlando 1 , Claudio M. Zicovich‐Wilson 2 , Bartolomeo Civalleri 1 , Lorenzo Maschio 1 , Michel Rérat 3 , Silvia Casassa 1 , Jacopo Baima 1 , Simone Salustro 1 , Bernard Kirtman 4
Affiliation  

The latest release of the Crystal program for solid‐state quantum‐mechanical ab initio simulations is presented. The program adopts atom‐centered Gaussian‐type functions as a basis set, which makes it possible to perform all‐electron as well as pseudopotential calculations. Systems of any periodicity can be treated at the same level of accuracy (from 0D molecules, clusters and nanocrystals, to 1D polymers, helices, nanorods, and nanotubes, to 2D monolayers and slab models for surfaces, to actual 3D bulk crystals), without any artificial repetition along nonperiodic directions for 0–2D systems. Density functional theory calculations can be performed with a variety of functionals belonging to several classes: local‐density (LDA), generalized‐gradient (GGA), meta‐GGA, global hybrid, range‐separated hybrid, and self‐consistent system‐specific hybrid. In particular, hybrid functionals can be used at a modest computational cost, comparable to that of pure LDA and GGA formulations, because of the efficient implementation of exact nonlocal Fock exchange. Both translational and point‐symmetry features are fully exploited at all steps of the calculation, thus drastically reducing the corresponding computational cost. The various properties computed encompass electronic structure (including magnetic spin‐polarized open‐shell systems, electron density analysis), geometry (including full or constrained optimization, transition‐state search), vibrational properties (frequencies, infrared and Raman intensities, phonon density of states), thermal properties (quasi‐harmonic approximation), linear and nonlinear optical properties (static and dynamic [hyper]polarizabilities), strain properties (elasticity, piezoelectricity, photoelasticity), electron transport properties (Boltzmann, transport across nanojunctions), as well as X‐ray and inelastic neutron spectra. The program is distributed in serial, parallel, and massively parallel versions. In this paper, the original developments that have been devised and implemented in the last 4 years (since the distribution of the previous public version, Crystal14, occurred in December 2013) are described.

中文翻译:

用CRYSTAL模拟量子力学的凝聚态

最新版本的Crystal提出了用于固态量子力学从头计算的程序。该程序采用以原子为中心的高斯型函数作为基础集,从而可以执行全电子以及伪电势计算。可以以相同的精度水平处理任何周期性的系统(从0D分子,簇和纳米晶体到1D聚合物,螺旋,纳米棒和纳米管,再到表面的2D单层和平板模型,再到实际的3D块状晶体),无需进行任何处理。对于0–2D系统,沿非周期性方向的任何人工重复。可以使用属于几类的各种功能来执行密度泛函理论计算:局部密度(LDA),广义梯度(GGA),元GGA,全局混合,范围分隔的混合以及自洽的系统特定杂交种。尤其是,混合功能可以以适度的计算成本使用,与纯LDA和GGA制剂的成本相当,这是因为可以有效地实现精确的非本地Fock交换。在计算的所有步骤中都充分利用了平移和点对称功能,从而大大降低了相应的计算成本。计算的各种特性包括电子结构(包括磁性自旋极化开壳系统,电子密度分析),几何形状(包括完全或约束优化,过渡态搜索),振动特性(频率,红外和拉曼强度,声子密度)状态),热特性(准谐波近似),线性和非线性光学特性(静态和动态(超)极化率),应变特性(弹性,压电性,光弹性),电子传输特性(玻耳兹曼(Boltzmann),跨纳米结的传输)以及X射线和非弹性中子光谱。该程序以串行,并行和大规模并行版本分发。本文是在过去4年中设计和实施的原始开发成果(自以前的公开版本发布以来,描述于2013年12月的《Crystal14》
更新日期:2018-03-04
down
wechat
bug