当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Critical kinetic uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion
Combustion and Flame ( IF 4.4 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.combustflame.2018.02.006
Yujie Tao , Gregory P. Smith , Hai Wang

Abstract In view of the critical role of the underlying uncertainties of the reaction model in future progress of combustion chemistry modeling, Foundational Fuel Chemistry Model 1.0 (FFCM-1) was developed with uncertainty minimization against available fundamental combustion data of H2, H2/CO, CH4, CH2O, and C2H6. As a critical feature, FFCM-1 not only reconciles a large body of fundamental combustion data, it also has rigorously evaluated uncertainties for the rate coefficients, the combustion experimental targets used for model optimization and uncertainty minimization, and most importantly, an optimized reaction model with quantified uncertainties. In the present work, the remaining kinetic uncertainties of FFCM-1 are examined using a perfectly stirred reactor (PSR) as the relevant model platform for which reliable experiments under the conditions tested are unavailable. The key questions to address include the level of improvement from model optimization in the prediction uncertainties of PSR residence times at extinction and ignition and the rate coefficients of reactions that must be improved in order to reduce the prediction uncertainties. Computational tests are made for H2/CO , CH2O , CH4 , CH3OH and C2H4–air mixtures over the pressure range of 10–100 atm and PSR inlet temperatures that would yield residence times comparable to the time scales typical of fuel combustion in practical combustors. The results show that although model optimization reduces the prediction uncertainties of residence time at extinction and ignition, the remaining uncertainties remain rather large. Key reactions for which reduced rate uncertainties would greatly improve the reaction model quality and accuracy have been identified and discussed in detail.

中文翻译:

模拟氢气/一氧化碳、甲烷、甲醇、甲醛和乙烯燃烧的关键动力学不确定性

摘要 鉴于反应模型的潜在不确定性在燃烧化学建模的未来进展中的关键作用,基础燃料化学模型 1.0 (FFCM-1) 被开发,针对 H2、H2/CO 的可用基本燃烧数据的不确定性最小化, CH4、CH2O 和 C2H6。作为一个关键特性,FFCM-1 不仅可以协调大量的基本燃烧数据,还严格评估了速率系数的不确定性,用于模型优化和不确定性最小化的燃烧实验目标,最重要的是,优化的反应模型具有量化的不确定性。在目前的工作中,使用完美搅拌反应器 (PSR) 作为相关模型平台检查 FFCM-1 的其余动力学不确定性,在测试条件下无法进行可靠实验。需要解决的关键问题包括模型优化在熄火和点火时 PSR 停留时间的预测不确定性方面的改进水平,以及必须改进以减少预测不确定性的反应速率系数。对 H2/CO、CH2O、CH4、CH3OH 和 C2H4-空气混合物在 10-100 个大气压的压力范围和 PSR 入口温度进行了计算测试,其产生的停留时间与实际燃烧室中燃料燃烧的典型时间尺度相当。结果表明,虽然模型优化降低了熄火和着火停留时间的预测不确定性,但剩余的不确定性仍然较大。已经确定并详细讨论了降低速率不确定性将大大提高反应模型质量和准确性的关键反应。
更新日期:2018-09-01
down
wechat
bug