当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Light-dependent processes on the cathode enhance the electrical outputs of sediment microbial fuel cells
Bioelectrochemistry ( IF 5 ) Pub Date : 2018-02-27 , DOI: 10.1016/j.bioelechem.2018.02.009
Ivo Bardarov , Mario Mitov , Desislava Ivanova , Yolina Hubenova

In this study, we explored in details the influence of the light irradiation on the SMFCs electrical outputs. The experiments at both natural and artificial illumination firmly show that during the photoperiods the current grows up. The intensity of the current increase depends on the duration of the photoperiod as well as on the wavelength of the monochromatic light source applied. The highest influence of the light irradiation has been obtained at wavelengths, corresponding to the absorption peaks of essential pigments in the light-harvesting system of oxygenic photosynthesizing microorganisms. The decreased values as well as the discontinued fluctuations of the current as a result of suppressed illumination or substitution of the biocathode with a new one suggest that photosynthesizing microorganisms, co-existing in the cathodic biofilm consortium, contribute to the overall SMFC performance. The microscopic observations confirm the existence of chlorophyll-containing microorganisms on the cathode surface. Though the performed metagenomics DNA analysis has not certified a dominance of photosynthesizing microorganisms, all other results support the hypothesis that the current enhance during the photoperiods is due to the in situ bio-oxygen production on the cathode surface, thus lowering the mass transport limitations for the oxygen reduction reaction.



中文翻译:

阴极上与光有关的过程增强了沉积物微生物燃料电池的电输出

在这项研究中,我们详细探讨了光辐照对SMFCs电输出的影响。在自然和人工照明下的实验都明确表明,在光周期中,电流会增长。电流增加的强度取决于光周期的持续时间以及所施加的单色光源的波长。在相应于氧气光合作用微生物的光收集系统中基本色素的吸收峰的波长处,获得了最高的光照射影响。由于抑制了生物阴极的照射或生物阴极被新的替代而导致电流值的降低以及电流的不连续波动,这表明光合作用的微生物,在阴极生物膜联盟中并存,有助于整体SMFC性能。显微镜观察证实了在阴极表面上存在含叶绿素的微生物。尽管进行的宏基因组学DNA分析尚未证明光合作用微生物具有优势,但所有其他结果均支持以下假设:在光周期中电流增强是由于阴极表面上原位产生生物氧,从而降低了物质的传质限制。氧还原反应。

更新日期:2018-02-27
down
wechat
bug