当前位置: X-MOL 学术Mater. Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route†
Materials Horizons ( IF 13.3 ) Pub Date : 2018-02-27 00:00:00 , DOI: 10.1039/c7mh01139c
Luiz G. Greca 1, 2, 3, 4, 5 , Janika Lehtonen 1, 2, 3, 4, 5 , Blaise L. Tardy 1, 2, 3, 4, 5 , Jiaqi Guo 1, 2, 3, 4, 5 , Orlando J. Rojas 1, 2, 3, 4, 5
Affiliation  

Biomass-based nanomaterials such as bacterial cellulose (BC) are one of the most promising building blocks for the development of sustainable materials with the potential to outperform their conventional, synthetic, counterparts. The formation of BC occurs at the air–water interface, which has been exploited to engineer materials with finely controlled microtopographical features or simple three-dimensional morphologies for a wide range of applications. However, a high degree of control over the 3D morphology of BC films across several length scales (micro to macro) has not yet been achieved. Herein, we describe a simple yet customizable process to finely engineer the morphology of BC in all (x, y, z) directions, enabling new advanced functionalities, by using hydrophobic particles and superhydrophobized surfaces. This results in hollow, seamless, cellulose-based objects of given shapes and with sizes from ca. 200 μm to several centimeters. We demonstrate some of the unique properties of the process and the resulting objects via post-fabrication merging (biowelding), by in situ encapsulation of active cargo and by multi-compartmentalization for near limitless combinations, thus extending current and new applications for example in advanced carbon materials or regenerative medicine.

中文翻译:

多功能纳米纤维素3D结构的生物制造:便捷且可定制的路线

基于生物质的纳米材料,例如细菌纤维素(BC),是开发可持续材料的最有希望的基石之一,其潜力可能超过传统的合成材料。BC的形成发生在空气与水的界面处,已被广泛用于工程材料,这些材料具有精细控制的微观形貌特征或简单的三维形态,可用于广泛的应用。但是,尚未实现跨多个长度尺度(微观到宏观)对BC膜的3D形态进行高度控制。在此,我们描述了一个简单但可自定义的过程,以对所有(xyz)方向,通过使用疏水性颗粒和超疏水化表面来实现新的高级功能。这将产生具有给定形状且尺寸约为ca的中空,无缝,纤维素基物体200微米至几厘米。我们通过制造后的合并(生物焊接),活性货物的原位封装以及几乎无限组合的多隔室化,展示了该工艺和所得物体的某些独特性能,从而扩展了当前和新的应用,例如先进的碳材料或再生医学。
更新日期:2018-02-27
down
wechat
bug