当前位置: X-MOL 学术Neuroscientist › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Epigenome Interactions with Patterned Neuronal Activity.
The Neuroscientist ( IF 5.6 ) Pub Date : 2018-02-27 , DOI: 10.1177/1073858418760744
Jillian Belgrad 1 , R Douglas Fields 1
Affiliation  

The temporal coding of action potential activity is fundamental to nervous system function. Here we consider how gene expression in neurons is regulated by specific patterns of action potential firing, with an emphasis on new information on epigenetic regulation of gene expression. Patterned action potential activity activates intracellular signaling networks selectively in accordance with the kinetics of activation and inactivation of second messengers, phosphorylation and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which differentially activate specific transcription factors. Increasing evidence also implicates activity-dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit or promote transcription of specific genes. These mechanisms of activity-dependent regulation of gene expression are important in neural development, plasticity, and in neurological and psychological disorders.

中文翻译:

表观基因组相互作用与模式化的神经元活动。

动作电位活动的时间编码是神经系统功能的基础。在这里,我们考虑如何通过动作电位激发的特定模式来调节神经元中的基因表达,重点是关于基因表达的表观遗传调控的新信息。图案化的动作电位活性根据第二信使的激活和失活,蛋白激酶的磷酸化和去磷酸化以及胞质和核钙动力学的动力学选择性地激活细胞内信号传导网络,这些动力学差异地激活了特定的转录因子。越来越多的证据还暗示了表观遗传机制的活性依赖调节,以改变染色质的结构。三维染色质结构的变化,包括染色质压实,成环,双链DNA断裂,组蛋白和DNA修饰被动作电位活性改变,以选择性抑制或促进特定基因的转录。这些依赖活动调节基因表达的机制在神经发育,可塑性以及神经和心理疾病中很重要。
更新日期:2018-02-27
down
wechat
bug