当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application
Journal of Power Sources ( IF 9.2 ) Pub Date : 2018-02-22 , DOI: 10.1016/j.jpowsour.2018.02.027
Elham Hosseinzadeh , Ronny Genieser , Daniel Worwood , Anup Barai , James Marco , Paul Jennings

A 1D electrochemical-thermal model is developed to characterise the behaviour of a 53 Ah large format pouch cell with LiNixMnyCo1-x-yO2 (NMC) chemistry over a wide range of operating conditions, including: continuous charge (0.5C-2C), continuous discharge (0.5C-5C) and operation of the battery within an electric vehicle (EV) over an urban drive-cycle (WLTP Class 3) and for a high performance EV being driven under track racing conditions. The 1D model of one electrode pair is combined with a 3D thermal model of a cell to capture the temperature distribution at the cell scale. Performance of the model is validated for an ambient temperature range of 5°C–45°C. Results highlight that battery performance is highly dependent on ambient temperature. By decreasing the ambient temperature from 45 °C to 5 °C, the available energy drops by 17.1% and 7.8% under 0.5C and 5C discharge respectively. Moreover, the corresponding power loss is found to be: 5.23% under the race cycle as compared with 7.57% under the WLTP drive cycle. Formulation of the model is supported by a comprehensive set of experiments, for quantifying key parameters and for model validation. The full parameter-set for the model is provided ensuring the model is a valuable resource to underpin further research.



中文翻译:

电动汽车大型锂离子电池电化学热建模的系统方法

建立一维电化学热模型,以表征在广泛的工作条件下具有LiNi x Mn y Co 1-xy O 2(NMC)化学性质的53 Ah大型袋式电池的行为,包括:连续充电(0.5C -2C),连续放电(0.5C-5C)以及电动汽车(EV)中的电池在城市驾驶周期(WLTP 3类)上的运行,以及用于高性能EV的赛车。一对电极的1D模型与电池的3D热模型结合在一起,以捕获电池规模的温度分布。在环境温度为5的情况下验证了模型的性能摄氏–45摄氏。结果表明,电池性能高度依赖于环境温度。通过将环境温度从45°C降低到5°C,在0.5C和5C放电下,可用能量分别下降17.1%和7.8%。此外,发现相应的功率损耗为:在竞赛周期下为5.23%,而WLTP驱动周期下为7.57%。全面的实验集支持模型的制定,用于量化关键参数和模型验证。提供了模型的完整参数集,以确保模型是支持进一步研究的宝贵资源。

更新日期:2018-02-22
down
wechat
bug