当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transition of failure mode in hot stamping of AA6082 tailor welded blanks
Journal of Materials Processing Technology ( IF 6.3 ) Pub Date : 2018-07-01 , DOI: 10.1016/j.jmatprotec.2018.02.028
Jun Liu , Ailing Wang , Haoxiang Gao , Joao Gandra , Kathryn Beamish , Lihua Zhan , LiLiang Wang

Abstract A novel sheet metal forming process, by manufacturing parts in a single sheet with varying thickness, has been employed in this work. It combines hot forming and cold-die quenching, also known as HFQ®, and the use of aluminium tailor welded blanks (TWBs) into a hybrid process. A series of hot stamping tests on the AA6082 TWBs were performed to investigate the deformation behaviour and failure features. Two failure modes, i.e. circumferential necking and parallel weld necking have been observed in the formed parts depending on the forming speed and thickness ratio of the TWBs. An advanced forming limit prediction model has been developed and further integrated into finite element simulation via a cloud-based multi-objective platform 1 to investigate the failure/necking features of AA6082 TWBs. The model incorporates the theories of Hosford yield function, the anisotropic nature of plastic deformation in sheet metals and the Marciniak-Kaczynski (M-K) theory. According to the theories, the incremental work per unit volume ratio ( d e ¯ B ∙ σ ¯ B / d e ¯ A ∙ σ ¯ A ) between Zone B (thickness imperfect zone) and Zone A (the remainder of the material) is a key parameter determining the formability, by which the complex failure features have been fundamentally studied. The transition of failure mode in a TWB was attributed to the joint effects of temperature, strain rate and loading path changes. Strain rate could accelerate the development of localised necking in the TWBs when the failure mode was in transition from the circumferential mode to parallel mode.

中文翻译:

AA6082拼焊板热冲压失效模式的转变

摘要 在这项工作中,采用了一种新颖的钣金成形工艺,通过在单个板中制造不同厚度的零件。它将热成型和冷模淬火(也称为 HFQ®)与铝拼焊板 (TWB) 的使用结合到一个混合工艺中。对 AA6082 TWB 进行了一系列热冲压试验,以研究变形行为和失效特征。根据 TWB 的成形速度和厚度比,在成形零件中观察到两种失效模式,即圆周颈缩和平行焊缝颈缩。已经开发了一种先进的成形极限预测模型,并通过基于云的多目标平台 1 进一步集成到有限元模拟中,以研究 AA6082 TWB 的失效/颈缩特征。该模型结合了 Hosford 屈服函数理论、金属板塑性变形的各向异性性质和 Marciniak-Kaczynski (MK) 理论。根据理论,B区(厚度不完善区)和A区(材料的剩余部分)之间的单位体积增量功比( de ¯ B ∙ σ ¯ B / de ¯ A ∙ σ ¯ A )是关键决定可成形性的参数,通过该参数已经从根本上研究了复杂的失效特征。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。金属板材塑性变形的各向异性性质和 Marciniak-Kaczynski (MK) 理论。根据理论,B区(厚度不完善区)和A区(材料的剩余部分)之间的单位体积增量功比( de ¯ B ∙ σ ¯ B / de ¯ A ∙ σ ¯ A )是关键决定可成形性的参数,通过该参数已经从根本上研究了复杂的失效特征。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。金属板材塑性变形的各向异性性质和 Marciniak-Kaczynski (MK) 理论。根据理论,B区(厚度不完善区)和A区(材料的剩余部分)之间的单位体积增量功比( de ¯ B ∙ σ ¯ B / de ¯ A ∙ σ ¯ A )是关键决定成形性的参数,通过该参数已经从根本上研究了复杂的失效特征。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。B区(厚度缺陷区)和A区(材料的剩余部分)之间的单位体积增量功比(de¯ B ∙ σ ¯ B / de ¯ A ∙ σ ¯ A )是决定可成形性的关键参数,通过它已经从根本上研究了复杂的故障特征。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。B区(厚度缺陷区)和A区(材料的剩余部分)之间的单位体积增量功比(de¯ B ∙ σ ¯ B / de ¯ A ∙ σ ¯ A )是决定可成形性的关键参数,通过它已经从根本上研究了复杂的故障特征。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。TWB 中失效模式的转变归因于温度、应变率和加载路径变化的共同影响。当失效模式从圆周模式过渡到平行模式时,应变率会加速 TWB 中局部颈缩的发展。
更新日期:2018-07-01
down
wechat
bug