当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy transduction ferroic materials
Materials Today ( IF 24.2 ) Pub Date : 2018-09-01 , DOI: 10.1016/j.mattod.2018.01.032
Wenxiu Gao , Raymond Brennan , Yong Hu , Manfred Wuttig , Guoliang Yuan , Eckhard Quandt , Shenqiang Ren

Abstract Ferroic materials and multiferroics, characterized by their ferroic orders, provide an efficient route for the coupling control of magnetic, mechanical, and electrical subsystems in energy transduction, which aims at converting one form of energy into another. A surge of interest in the ferroic coupling effect has stemmed from its potential use as a new versatile route for energy transduction. Here, the recent progress on the use of (multi)ferroic materials is reviewed, with special emphasis on the fundamental mechanisms that dictate the energy transduction process, including piezoelectricity, pyroelectricity, electrocaloric, magnetostriction, magnetocaloric, elastocaloric, magnetoelectricity, and emerging spin-charge conversion. Research on energy transduction ferroic materials paves the way for ubiquitous energy harvesting through magneto-mechano-electric-thermal coupling mechanisms. Finally, a summary and the future prospective directions of this field are discussed.

中文翻译:

能量转换铁质材料

摘要 铁质材料和多铁性材料以其铁质有序性为特征,为能量转换中磁、机械和电子系统的耦合控制提供了一种有效的途径,旨在将一种形式的能量转换为另一种形式。对铁质耦合效应的兴趣激增源于其作为一种新的多功能能量传导途径的潜在用途。在这里,回顾了(多)铁性材料使用的最新进展,特别强调了决定能量转换过程的基本机制,包括压电、热电、电热、磁致伸缩、磁热、弹性热、磁电和新兴的自旋-电荷转换。能量转换铁质材料的研究为通过磁-机-电-热耦合机制实现无处不在的能量收集铺平了道路。最后,讨论了该领域的总结和未来的展望方向。
更新日期:2018-09-01
down
wechat
bug