当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Alternative Bioenergy: Updates to and Challenges in Nitrification Metalloenzymology
Joule ( IF 39.8 ) Pub Date : 2018-02-22 , DOI: 10.1016/j.joule.2018.01.018
Kyle M. Lancaster , Jonathan D. Caranto , Sean H. Majer , Meghan A. Smith

Biological ammonia (NH3) oxidation to nitrate (NO3)––nitrification––is a critical pathway of the biogeochemical nitrogen cycle. Additional products and by-products of this pathway include nitrite (NO2), nitric oxide (NO), nitrous oxide (N2O), and nitrogen dioxide (NO2), several of which are pollutants. How these species are generated during nitrification is not entirely clear, but pathways toward their generation have drawn substantial research effort. The cumulative evidence shows several parallel biological pathways comprising the net nitrification process. Bacteria were long thought to mediate all nitrification transformations; however, archaeal nitrifiers are now recognized. Furthermore, nitrification was thought to require two distinct microbial classes: NH3 oxidizers to oxidize NH3 to NO2, and NO2 oxidizers that oxidize NO2 to NO3. Comammox bacteria, which effect complete oxidation of NH3 to NO3, were recently discovered. This Perspective summarizes the current understanding of nitrification biochemistry and highlights exciting opportunities for future research.



中文翻译:

替代生物能源:硝化金属金相学的更新与挑战

生物氨(NH 3)氧化为硝酸盐(NO 3 -)-硝化-是生物地球化学氮循环的关键途径。此途径的其他产品和副产品包括亚硝酸盐(NO 2 ),一氧化氮(NO),一氧化二氮(N 2 O)和二氧化氮(NO 2),其中几种是污染物。这些物种在硝化过程中如何产生尚不完全清楚,但是产生这些物种的途径已经引起了巨大的研究努力。累积的证据显示了构成净硝化过程的几种平行生物学途径。长期以来,细菌一直被认为可以介导所有硝化转化。但是,古硝化器现已被认可。此外,硝化被认为需要两种不同的微生物类:NH 3氧化剂氧化NH 3为NO 2 -和NO 2 -氧化剂该NO氧化2 -为NO 3 -。Comammox细菌,NH的这效果完全氧化3至NO 3 - ,最近发现的。该观点概述了对硝化生物化学的当前理解,并突出了未来研究的令人兴奋的机会。

更新日期:2018-02-22
down
wechat
bug